

B.Tech II Year I Semester (R15) Supplementary Examinations June 2017

DATABASE MANAGEMENT SYSTEMS

(Common to CSE and IT)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- (a) How many distinct tuples are in a relation instance with cardinality 22?
- (b) Define candidate key.
- (c) Let R = (A, B, C), and let r_1 and r_2 both be relations on schema R. Give an expression in SQL that is equivalent to $r_1 r_2$.
- (d) Explain the statement that relational algebra operators can be composed. Why is the ability to compose operators important?
- (e) Decompose the functional dependency $X \rightarrow YZ$.
- (f) Consider a relation R(A, B, C, G, H, I) and functional dependences $\{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$. Compute (AG)+.
- (g) Suppose that there is a database system that never fails. Is a recovery manager required for this system?
- (h) What benefit does strict two-phase locking provide?
- (i) List the two kind of indices.
- (j) B+ tree of order d has m entries in every node. What is the mathematical relation between d and m?

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT – I

- 2 (a) Why would you choose a database system instead of simply storing data in operating system files? When would it make sense not to use a database system?
 - (b) What are the responsibilities of a DBA? If we assume that the DBA is never interested in running his or her own queries, does the DBA still need to understand query optimization? Why?

OR

3 Consider the following information about a university database:

Professors have an SSN, a name, an age, a rank and a research specialty. Projects have a project number, a sponsor name, a starting date, an ending date and a budget. Graduate students have an SSN, a name, an age and a degree program. Each project is managed by one professor. Each project is worked on by one or more professors. Professors can manage and/or work on multiple projects. Each project is worked on by one or more graduate students. When graduate students work on a project, a professor must supervise their work on the project. Graduate students can work on multiple projects, in which case they will have a supervisor for each one. Departments have a department number, a department name and a main office. Departments have a professor who runs the department. Professor's work in one or more departments.

Design and draw an ER diagram that captures the information about the university.

UNIT – II

4 Consider the following schema:

Suppliers(sid: integer, sname: string, address. string)

Parts(pid.' integer, pname: string, color: string)

Catalog(sid: integer, pid. integer, cost: real)

Write the queries in relational algebra, tuple relational calculus, domain relational calculus and SQL to find the *sids* of suppliers who supply some red part and some green part.

OF

5 Consider the following relational schema and briefly answer the questions that follow:

Emp(eid: integer, ename: string, age: integer, salary: real)

Dept(did: integer, budget: real, managerid: integer)

- (a) Define a table constraint on **Emp** that will ensure that every employee makes at least \$10,000.
- (b) Define a table constraint on **Dept** that will ensure that all managers have age > 30.

Contd. in page 2

(UNIT – III)

- 6 Explain about following normal forms
 - (a) Second Normal Form.
 - (b) Third Normal Form.
 - (c) Boyce-Codd Normal Form.

OR

- 7 (a) Write a short note about lossless join decomposition.
 - (b) Give a note on Dependency preservation.

UNIT - IV

8 Show that there are schedules that are possible under the two-phase locking protocol, but are not possible under the timestamp protocol, and vice versa.

OR

- 9 (a) List the ACID properties. Explain the usefulness of each
 - (b) Explain the difference between the three storage types-volatile, nonvolatile and stable in terms of I/O cost.

UNIT – V

Explain the difference between Hash index and B⁺ tree index. In particular, discuss how equality and range searches work, using an example?

OR

- 11 (a) What is the minimum space utilization for a B⁺ tree and ISAM index?
 - (b) Explain why local depth and global depth are needed in Extendible Hashing.

www.kirsiRanker.com