www.FirstRanker.com

Code: 9A02406

B.Tech II Year II Semester (R09) Supplementary Examinations May/June 2017

NETWORK THEORY

(Electrical & Electronics Engineering)

Time: 3 hours Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Explain the single watt meter method measurement of power with a neat diagram.
 - (b) Three coils each having a resistance of 20 Ω and an inductive reactance of 15 Ω are connected in star and fed by a 3-phase, 400 V, 50 Hz system. Find (i) Line current. (ii) Power. (iii) Power factor.
- 2 The power flowing in 3-Φ, 3 wire balanced load system is measured by the two-wattmeter method. The reading of wattmeter A is 4000 W and on wattmeter B is -1000 W. What is the power factor of the system and also derive the expression for power factor?
- 3 A series RL circuit with R = 20 Ω and L = 10H has a constant voltage, V = 50 V applied at t = 0 as shown in fig below. Derive the equation for current and determine the current i, the voltage across resistor and the voltage across inductor.

- A series R-C circuit has R = $20~\Omega$ and C = $100~\mu$ F. A voltage V = 200~sin(314t) is applied at t = 2.14~m sec. Obtain an expression for 'i'. Also, find the value of current after time 1 m sec from the switching instant.
- 5 Find the z-parameters for the circuit shown below:

6 Find the transmission parameters for the following network:

- 7 Derive the Fourier series of a half-wave rectified sine wave.
- 8 (a) Define inverse Fourier transform.
 - (b) Find the inverse Fourier transform of $y(w) = \pi \delta(w) + \frac{1}{jw} + \frac{2(1+jw)}{(1+jw)^2 + 16}$