B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017

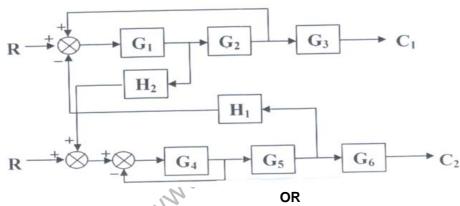
CONTROL SYSTEMS ENGINEERING

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)


- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Discuss advantages of closed loop system over open loop system.
 - (b) What is the displacement equivalence in the electrical system?
 - (c) How a control system is classified depending on the value of damping?
 - (d) Why derivative controller is not used in control system?
 - (e) Compare minimum phase function & non minimum phase function.
 - (f) State the rule for obtaining the breakaway point in root locus.
 - (g) State the properties of lead compensator.
 - (h) Define corner frequency in frequency response.
 - (i) Write the properties of state transition matrix.
 - (j) Discuss the significance of state Space Analysis.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

[UNIT – I]

Find TF, $\frac{C_1(s)}{R_2(s)}$ of the block diagram shown below.

3 Derive the transfer function for A.C servomotor.

UNIT - II

A unity feedback system is $G(s) = \frac{20 (s+2)}{s(s+3) (s+4)}$. (i) Find the static error constants. (ii) Find the steady state error for r(t) = 3u(t) + 5tu(t).

OR

Evaluate the time response of a system subjected to a unit step input $c(t) = 1 + 0.2e^{-60t} - 1.2e^{-10t}$. Obtain the expressions for the closed loop transfer function? Also determine the un-damped natural frequency and damping ratio of the system.

Contd. in page 2

UNIT - III

6 Check whether the points s = -3 + j5 lies on the root locus of the $G(s)H(s) = \frac{k}{s(s+1)(s+5)}$ system. Determine the corresponding value of k.

7 Sketch the root locus plot for a unity feedback system with an open loop transfer function $G(s) = \frac{k}{s(s+3)(s+4)}$. Determine the value of K so that the dominant pair of complex poles of the system has a damping ratio of 0.5

8

Use Nyquest criteria to find the stability of system $G(s) = \frac{1}{s^2(1+s)}$ and H(s) = 1 + 2s. 9

[UNIT – V]

10 Obtain the state variable representation of an armature controlled D.C Servomotor

The dynamic behaviour of the system is described by $\frac{dc(t)}{dt} + 10c(t) = 40e(t)$, where 'e(t)' is the input and 11 'c(t)' is the output. Determine the transfer function of the system.

www.FirstRanker.com