Code: 13A54102

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 MATHEMATICS – II

(Computer Science and Engineering)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

(a) Determine the rank of the matrix: $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5 \end{bmatrix}$

(b) Find the values of k for which the system of equations:

$$(3k-8)x + 3y + 3z = 0$$

$$3x + (3k-8)y + 3z = 0$$

3x + 3y + (3k - 8)z = 0 has a nontrivial solution.

(c) Given the values.

1	ii tiie valaee.									
	X:	5	7	11	13	17				
	f(x)	150	392	1492	2366	5202				

Evaluate f(9), using Lagrange's interpolation formula.

- (d) Use Simpson's $1/3^{rd}$ rule to find $\int_0^{0.6} e^{-x^2} dx$ by taking seven ordinates.
- (e) Apply Runge-Kutta fourth order method, to find an approximate value of y when x = 0.2, given that dy/dx = x+y and y = 1 when x = 0.
- (f) Find the Fourier series to represent x² in the interval (-I, I)
- (g) Find the Fourier cosine transform of e^{-x^2} .
- (h) Find the z-transform of the following:
 - (i) $3n = 4 \sin n\pi/4 + 5a$.
 - (ii) $(n + 1)^2$.
- (i) Derive a partial differential equation (by eliminating the constants) from the equation $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$.
- (j) Using the method of separation of variables solve $py^3 + qx^2 = 0$.

PART – B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

- 2 (a) Find the matrix p which transforms the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{pmatrix}$ to the diagonal form. Hence calculate A^4 .
 - (b) Reduce the quadratic form 2xy + 2yz + 2zx into canonical form.

OR

- 3 (a) Prove that the matrix $A = \begin{pmatrix} \frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \\ \frac{1}{2}(1+i) & \frac{1}{2}(1-i) \end{pmatrix}$ is unitary and find A⁻¹
 - (b) Prove that every Hermitian matrix can be written as A + iB, where A is real and symmetric and B is real and skew-symmetric.

Contd. in page 2

www.FirstRanker.com

Code: 13A54102

- Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position corrected to three
 - (b) Find the positive root of $x^4 x = 10$ corrected to three decimal places, using Newton-Raphson method.

(a) From the following table, estimate the number of students who obtained marks between 40 and 45: 5

Marks:	30-40	40-50	50-60	60-70	70-80
No. of students:	31	42	51	35	31

- Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using:
 - (i) Trapezoidal rule.
 - (ii) Simpson's 1/3 rule.
 - (iii) Simpson's 3/8 rule.

UNIT - III

- (a) Solve by Taylor's series method the equation dy/dx = log (xy) for y(1.1) and y(1.2), given y(1) = 2.
 (b) Apply Milne's method, to find a solution of the differential equation y' =x y² in the range 0 ≤ x ≤ 1 for
 - the boundary conditions y = 0 of x = 0.

- (a) Find the Fourier series to represent $x x^2$ from $x = -\pi$ to $x = \pi$. 7
 - (b) Express f(x) = x as a half range sine series in 0 < x < 2.

UNIT - IV

8 (a)

$$f(x) = \begin{cases} 1 - x^2, |x| \le 1\\ 0, & |x| > 1 \end{cases}$$

Find the Fourier transform of. $f(x) = \begin{cases} 1 - x^2, |x| \le 1\\ 0, & |x| > 1 \end{cases}$ Hence evaluate $\int_0^\infty \frac{x \cos x - \sin x}{x^3} \cos \frac{x}{2} dx.$

(b) Show that $Z(\sin hn\theta) = \frac{z \sin h\theta}{z^2 - 2z \cos h\theta}$

- (a) If $Z^{-1}[U(z)] = u_n$ and $Z^{-1}[V(z)] = v_n$, then prove that $Z^{-1}[U(z).V(z) = \sum_{m=0}^n u_m.v_{n-m} = u_n*v_n$ where the symbol * denotes the convolution operation.
 - (b) Find the inverse z.-transform of $\frac{z-z_0z}{(z-2)^3(z-4)}$.

- Solve the differential equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ for the conduction of neat along a rod without radiation, 10 subject to the following conditions: U is not infinite for $t\rightarrow\infty$.

 - $\frac{\partial u}{\partial x} = 0 \text{ for } x = 0 \text{ and } x = l.$ $u = lx x^2 \text{ for } t = 0, \text{ between } x = 0 \text{ and } x = l.$

Solve the Laplace equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ subject to the conditions u(0,y) = u(l,y) = u(x,0) = 011 and $u(x, a) = \sin n\pi x/l$.