B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017
 MATHEMATICS - II

(Computer Science and Engineering)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Determine the rank of the matrix: $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 2 \\ 2 & 6 & 5\end{array}\right]$.
(b) Find the values of k for which the system of equations:
$(3 k-8) x+3 y+3 z=0$
$3 x+(3 k-8) y+3 z=0$
$3 x+3 y+(3 k-8) z=0$ has a nontrivial solution.
(c) Given the values.

$\mathrm{x}:$	5	7	11	13	17
$\mathrm{f}(\mathrm{x})$	150	392	1492	2366	5202

Evaluate $f(9)$, using Lagrange's interpolation formula.
(d) Use Simpson's $1 / 3^{\text {rd }}$ rule to find $\int_{0}^{0.6} e^{-x^{2}} d x$ by taking seven ordinates.
(e) Apply Runge-Kutta fourth order method, to find an approximate value of y when $x=0.2$, given that $d y / d x=x+y$ and $y=1$ when $x=0$.
(f) Find the Fourier series to represent x^{2} in the interval ($-\mathrm{I}, \mathrm{I}$)
(g) Find the Fourier cosine transform of $e^{-x^{2}}$.
(h) Find the z-transform of the following:
(i) $3 n=4 \sin n \pi / 4+5 a$.
(ii) $(\mathrm{n}+1)^{2}$.
(i) Derive a partial differential equation (by eliminating the constants) from the equation $2 z=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$.
(j) Using the method of separation of variables solve $p y^{3}+q x^{2}=0$.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Find the matrix p which transforms the matrix $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right)$ to the diagonal form. Hence calculate A^{4}.
(b) Reduce the quadratic form $2 x y+2 y z+2 z x$ into canonical form.

3 (a) Prove that the matrix $A=\left(\begin{array}{cc}\frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \\ \frac{1}{2}(1+i) & \frac{1}{2}(1-i)\end{array}\right)$ is unitary and find A^{-1}.
(b) Prove that every Hermitian matrix can be written as $A+i B$, where A is real and symmetric and B is real and skew-symmetric.

Contd. in page 2

Code: 13A54102

UNIT - II

4 (a) Find a real root of the equation $x^{3}-2 x-5=0$ by the method of false position corrected to three decimal places.
(b) Find the positive root of $x^{4}-x=10$ corrected to three decimal places, using Newton-Raphson method. OR
5 (a) From the following table, estimate the number of students who obtained marks between 40 and 45:

Marks:	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of students:	31	42	51	35	31

(b) Evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by using:
(i) Trapezoidal rule.
(ii) Simpson's $1 / 3$ rule.
(iii) Simpson's 3/8 rule.

UNIT - III

6 (a) Solve by Taylor's series method the equation $\frac{d y}{d x}=\log (x y)$ for $y(1.1)$ and $y(1.2)$, given $y(1)=2$.
(b) Apply Milne's method, to find a solution of the differential equation $y^{\prime}=x-y^{2}$ in the range $0 \leq x \leq 1$ for the boundary conditions $y=0$ of $x=0$.

OR

7 (a) Find the Fourier series to represent $x-x^{2}$ from $x=-\pi$ to $x=\pi$.
(b) Express $f(x)=x$ as a half range sine series in $0<x<2$.

UNIT - IV

8 (a) Find the Fourier transform of:

$$
f(x)= \begin{cases}1-x^{2}, & |x| \leq 1 \\ 0, & |x|>1\end{cases}
$$

Hence evaluate $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} \cos \frac{x}{2} d x$.
(b) Show that $Z(\sin h n \theta)=\frac{z \sin h \theta}{z^{2}-2 z \cos h \theta+1}$.

OR
9 (a) If $Z^{-1}[U(z)]=u_{n}$ and $Z^{-1}[V(z)]=v_{n}$, then prove that $Z^{-1}\left[U(z) \cdot V(z)=\sum_{m=0}^{n} u_{m} \cdot v_{n-m}=u_{n} * v_{n}\right.$ where the symbol * denotes the convolution operation.
(b) Find the inverse z.-transform of $\frac{z^{3}-20 z}{(z-2)^{3}(z-4)}$.

UNIT - V

Solve the differential equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ for the conduction of neat along a rod without radiation, subject to the following conditions:
(a) U is not infinite for $\mathrm{t} \rightarrow \infty$.
(b) $\frac{\partial u}{\partial x}=0$ for $x=0$ and $x=l$.
(c) $u=l x-x^{2}$ for $\mathrm{t}=0$, between $\mathrm{x}=0$ and $\mathrm{x}=l$.

OR

11 Solve the Laplace equation $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$ subject to the conditions $u(0, y)=u(l, y)=u(x, 0)=0$ and $u(x, a)=\sin n \pi x / l$.

