

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017

ELECTRICAL TECHNOLOGY

(Electronics and Communication Engineering)

Max. Marks: 70

Time: 3 hours

PART – A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - Derive relationship between star to delta transformation. (a)
 - (b) Explain applications of Milman's theorem.
 - Derive the E.M.F equation of DC generator. (c)
 - Explain the significance of Back EMF in DC motors. (d)
 - Explain principle of operation of single phase transformer. (e)
 - Derive equivalent circuit of single phase transformer. (f)
 - Define slip and explain significance of slip in three phase induction motor. (g)
 - (h) Explain power stages of three phase induction motor.
 - Explain principle of operation of alternator. (i)
 - Explain constructional features of salient pole synchronous machines. (j)

PART – B

(Answer all five units, $5 \times 10 = 50$ Marks)

UNIT – I

- 2 (a) Three similar inductive coils, each having a resistance of 20 Ω and reactance of 12.57 Ω are connected in star are fed from a $3 - \phi$, 50 Hz, 200 V supply. Calculate the line current and the power absorbed.
 - (b) Three identical impedances of $(3 + j4)\Omega$ are connected in delta. Find an equivalent star network such that the line current is same when connected to the same supply.

OR

- (a) A 3 ϕ , 3-wire, 240 V system supplies three delta connected loads, $Z_{AB} = 25 \angle 90^{\circ}$, $Z_{BC} = 15 \angle 30^{\circ}$ and 3 $Z_{CA} = 20 \angle 0^\circ$. The phase sequence is *ACB*. Find the line currents and total power.
 - Derive the expression for wattmeter reading in two wattmeter method with balanced star connected (b) load. How do you calculate the P.F of the balanced load from wattmeter reading?

UNIT – II

- Explain different types of DC generators. 4
 - (b) Draw and explain magnetization and load characteristics of DC shunt generator.

OR

- Explain different characteristics of DC shunt motor. 5 (a)
 - (b) Explain different methods of speed control of dc motors.

UNIT – III

(a) Explain constructional details of transformer. 6 (b) Derive the EMF Equation of the transformer.

OR

Explain O.C and S.C test on single phase transformer with diagram and find the equation for regulation 7 on transformer.

UNIT – IV

8 (a) Explain principle of operation of induction motor.

9

Explain the power stages of different losses in three phase induction motor. (b)

OR

- Explain why the rotor of poly-phase induction motor can never attain synchronous speed. (a)
- Explain torque slip characteristics of three phase induction motor. (b)

UNIT – V

10 Explain voltage regulation of alternator by synchronous impedance method.

Explain the constructional details of alternator (a)

11 Briefly describe the coil span factor all states and alternator. (b)