B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017
 NETWORK ANALYSIS
 (Electronics \& Communication Engineering)

Time: 3 hours
Max. Marks: 70
PART-A
(Compulsory Question)

1
Answer the following: (10 X $02=20$ Marks)
(a) State Tellegen's theorem.
(b) Define 'Tree’ of a graph.
(c) Define time constant of RL circuit.
(d) What is the difference between average power and apparent power?
(e) Define ' Q ' factor.
(f) What is an ideal transformer?
(g) What are the advantages of state variable approach?
(h) Express Z_{22} in terms of Y - parameters.
(i) List any two properties of symmetrical network.
(j) Define neper.

PART - B
(Answer all five units, $5 \times 10=50$ Marks)
UNIT - I Find V and I using mesh analysis.

Obtain the Thevenin's equivalent for the given circuit.

UNIT - II
4 An RL series circuit with $R=300 \Omega$ and $\mathrm{L}=1 \mathrm{H}$ has a sinusoidal voltage $v=100 \cos (100 t+\phi)$ volts. If the switch is closed when $\phi=45^{\circ}$, obtain the resulting current $i(t)$.

OR
For the circuit shown in the figure below, determine power factor, average \& apparent power.

UNIT - III

A series RLC circuit with $R=30 \Omega$, $L=0.5 \mathrm{H}$ results in a leading phase angle of 60° at a frequency of 50 Hz . At what frequency will the circuit be resonant?

OR
Determine the value of L for which the circuit shown in figure below is resonant at a frequency of $W=10,000 \mathrm{rad} / \mathrm{sec}$.

UNIT - IV
Find the h-parameters for the network shown in figure below.

Write the state equation for the circuit shown in figure below.

Design a constant - K low pass filter, both T and π sections having a cut-off frequency of 2 kHz to operate with a terminated load resistance of 500Ω.

OR
Design a m-derived high pass filter with a cut off frequency of 10 kHz , design impedance of 600Ω and $\mathrm{m}=0.3$.

