

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

ELECTROMAGNETIC THEORY & TRANSMISSION LINES

(Electronics & Communication Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Define electric field and electric flux density.
 - (b) Define electric dipole. Differentiate between polar and nonpolar dielectrics.
 - (c) State and express the Stokes theorem.
 - Write down the Maxwell's equations in free space condition. (d)
 - (e) Define skin depth or depth of penetration.
 - State and express the Poynting theorem. (f)
 - Write down the distortion less line. (g)
 - (h) Define transmission line. Explain different types of transmission lines.
 - Define the voltage standing wave ratio. (i)
 - (i) Difference between the single stub matching and double stub matching.

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

- Uniform line charge of 0.4 μ C and -0.4 μ C are located in the x=0 plane at y=-0.6 and 0.6 m 2 respectively. Let $\varepsilon = \varepsilon_0$. Find E at: OR
 - (a) P(x, 0, z)
 - (b) Q(2,3,4)

3 Given $D = 8\rho \sin \phi \hat{a}_{\rho} + 4\rho \cos \phi \hat{a}_{\phi} C/m^2$.

Find the volume charge density at $P(2.6, 38^{\circ}, -6.1)$.

How much charge is located inside the region defined by $0 < \rho < 1.8, 0^{\circ} < \phi < 70^{\circ}, 2.4 < z < 3.1$.

A unit vector directed from region 1 to region 2 at the planar boundary between two perfect dielectrics is 4 given as $\hat{a}_{N12} = (-2/7)\hat{a}_x + (3/7)\hat{a}_y + (6/7)\hat{a}_z$. Assume $\varepsilon_{r1} = 3$, $\varepsilon_{r2} = 2$ and electric field in region 1 is $\vec{E}_1 = 100\hat{a}_x + 80\hat{a}_y + 60\hat{a}_z V/m$. Find the electric field \vec{E}_2 , polarization vector \vec{P}_2 in region 2 and the angles made by the vectors \vec{E}_1 and \vec{E}_2 with the normal to the interface.

- 5 Derive an equation for magnetic field intensity due to:
 - Infinite line placed along z-axis at an observation point P on y axis. (a)
 - Infinite sheet with uniform current density placed in z = 0 plane.

Contd. in page 2

www.FirstRanker.com

Code: 15A04403

UNIT - III

6 In a lossless medium $\eta = 40\pi$, $\mu_r = 1$ and $H = 2\cos(\omega t - z)\hat{a}_x + 5\sin(\omega t - z)\hat{a}_y A/m$. Find ε_r , ω and E for the medium.

- 7 In a medium $\vec{E} = 16e^{-0.05x} \sin(2 \times 10^8 t - 2x) a_z V/m$ find:
 - (a) Propagation constant.
 - (b) Wavelength.
 - (c) Speed of the wave.

UNIT - IV

- 8 In a nonmagnetic material $H = 30\cos(2\pi \times 10^8 t - 6x)\hat{a}_v \, mA/m$. Calculate:
 - (a) The intrinsic impedance.
 - (b) The Poynting vector.
 - (c) The time average power crossing the surface.

$$x = 1, 0 < y < 2, 0 < z < 3 m.$$

OR

Explain reflection of uniform plane wave by a perfect conductor in the case of oblique incidence for parallel 9 polarization.

UNIT - V

10 A transmission line 100 km long has the following impedance measurements at 1796 Hz, $Z_{oc} = 328 \angle - 29.2^{\circ}$, $Z_{sc} = 1548 \angle 6.8^{\circ}$. Determine the primary line constants.

11 Using Smith chart, determine VSWR, the input impedance and reflection coefficient at the input end of a transmission line of 50 Ω , terminated by a load impedance of $Z_L = 25 + j50 \Omega$. The length of the line is MANN FILST RANK 60 cm and the wavelength on the line $\lambda = 2 cm$.