

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

PULSE & DIGITAL CIRCUITS

(Electronics & Instrumentation Engineering)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Why are RC circuits commonly used compared to RL circuits?
 - (b) What is meant by linear wave shaping?
 - (c) What are all the applications of a comparator?
 - (d) What is the difference between the clipping circuit and clamping circuit?
 - (e) What is the function of commutating capacitors in multivibrator?
 - (f) In an astable multivibrator, the base resistances are 12.5 k Ω and the capacitors are of 0.01 μF . Determine the pulse repetition rate.
 - (g) Draw the diagram of transistor miller time base generator.
 - (h) Give the classification of time base generators.
 - (i) Differentiate TTL and CMOS logic families.
 - (j) Why are sampling gates are called as transmission gates?

PART - B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

Derive an expression for the output of a high pass RC circuit excited by a ramp input and plot the input and output waveforms.

OR

In an RC low pass circuit $R=2\,k\Omega$ and $C=1\,\mu F$. A square wave with half period of $5\,\mu s$ is applied as input to this circuit. Determine the output waveform.

UNIT - II

4 Explain with neat diagram, the functions of various practical clamping circuits.

OR

5 Explain with neat diagrams and waveforms, the operation of a voltage comparator.

UNIT - III

Explain with the help of a neat circuit diagram, the principle of operation of a mono stable multivibrator and derive an expression for pulse width.

OR

Design an astable multivibrator to generate a 5 kHz square wave with a duty cycle of 50% and amplitude 12 V. Use NPN silicon transistors having $h_{fe}(min) = 70$, $V_{CE(Sat)} = 0.3 V$, $V_{BE(Sat)} = 0.7 V$, $V_{BE(Cutoff)} = 0 V$ and $R_C = 2 k\Omega$. Draw the waveforms produced at the collector and base of both the transistors.

UNIT - IV

Draw the circuit diagram and waveforms of a transistorized bootstrap time base generator and explain the principle of operation.

OR

9 Explain the method of pulse synchronization using relaxation devices with examples.

UNIT - V

What are the basic operating principles of sampling gates? Explain the operation of four diode sampling gate.

OR

11 Compare the performance of various logic families with reference to power dissipation, propagation delay, fan-in and fan-out.