

Max. Marks: 70

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017 FORMAL LANGUAGES & AUTOMATA THEORY

(Computer Science and Engineering)

Time: 3 hours

2

PART – A

(Compulsory Question)

- 1 Answer the following: (10 X 02 = 20 Marks)
 - (a) Define a DFA formally.
 - (b) Differentiate between a Moore machine and a mealy machine.
 - (c) What are various forms in which we can represent regular languages?
 - (d) Construct a DFA that accepts strings which does not contain a substring of 110.
 - (e) State and prove ARDEN's theorem.
 - (f) When do we say a CFG is in Greibach Normal Form?
 - (g) Compare and contrast DPDA and NPDA.
 - (h) State the properties of LR grammars.
 - (i) Write short notes on Linear Bounded Automata.
 - (j) List the closure properties of Recursively Enumerable Languages.

PART – B

(Answer all five units, $5 \times 10 = 50$ Marks)

Convert the following mealy machine into its equivalent Moore machine.

From state	i/p	To state	o/p	i/p	To state	o/p	
Q ₀	0	Q ₁	Ν	1	Q ₃	Ν	
Q ₁	0	Q ₂	Ν	1	Q ₃	Ν	
Q ₂	0	Q ₂	Y	1	Q ₃	Ν	
Q ₃	0	Q ₁	Ν	1	Q_4	Ν	
Q ₄	0	Q ₁	Ν	1	Q ₄	Y	
	•	OR					

3 Minimize the following automata.

UNIT – II

4 Prove that the language $0^p | p$ is a prime number is not regular.

OR

- 5 (a) Explain how equivalence between two FA is verified with an example.
- (b) What are the applications of regular expressions and finite automaton?

Contd. in page 2

www.FirstRanker.com

FirstRanker.com ww.FirstRanker.com

(UNIT – III)

6 Convert the following grammar into Greibach Normal form:

irstranker's choice

Code: 15A05404

- $A_1 \rightarrow A_2 A_3$; $A_2 \rightarrow A_3 A_1 | b$; $A_3 \rightarrow A_1 A_2 | a$; OR
- 7 Explain the closure properties of Context Free languages.

UNIT – IV

- 8 Construct a PDA that recognizes balanced parentheses.
- OR 9 Construct a PDA that recognizes strings of type aⁱbⁱc^{i+j}.

UNIT – V

10 Construct a Turing machine which carries out proper subtraction (a-b=0, if a<b).

OR

- Explain Chomsky Hierarchy of languages. 11 (a)
 - Explain any four variations of Turing machines. (b)

www.FirstRanker.com