B.Tech II Year II Semester (R15) Regular Examinations May/June 2017

MATHEMATICS – IV

(Common to EEE, ECE and EIE)

Time: 3 hours Max. Marks: 70

PART – A

(Compulsory Question)

1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$

- Compute $\Gamma(3.5)$. (a)
 - $\beta\left(\frac{9}{2},\frac{7}{2}\right)$. (b)
 - Compute $J_0(2)$ (c)
 - $J_0(x) = \frac{9}{2}[J_2(x) J_0(x)]$ use recurrence relation. (d)
 - Find the critical points of the transformation $w^2 = (z a)(z b)$.
 - Compute $V(r, \theta)$ when $f(z) = u(r, \theta) + iv(r, \theta)$. Here $u(r, \theta) = \left(r + \frac{1}{r}\right) \cos \theta$. (f)
 - Expand Taylor's series $\cos z$ about the point $z = \pi/2$. (g)
 - Write the formula of pole of order n at $z = z_0$. (h)
 - Evaluate $\oint_{\mathcal{C}} e^{1/z^2} dz$ where C is |z| = 2 traversed counterclockwise. (i)
 - Evaluate $\oint_C \frac{dz}{z^2(z+4)} dz$ where C is |z| = 2. (j)

PART – B

(Answer all five units, $5 \times 10 = 50 \text{ Marks}$)

UNIT - I

2 State and prove relation between Beta and Gamma function.

- (a) Find the value of $\Gamma\left(\frac{1}{2}\right)$.
 - (b) Derive $\int_0^{\frac{\pi}{2}} \sin^{n\theta} d\theta$.

Show that $J_0(x) = \frac{1}{\pi} \int_0^{\pi} \cos(x \cos \phi) d\phi$. 4

Find the value of $J_{\frac{1}{2}}(x)$. 5

Find the analytical function of the complex potential for an electric field $w=\phi+\mathrm{i}\Psi$, given that 6 $\Psi = x^2 - y^2 + \frac{x}{x^2 + y^2}$. Use Milne Thomson method.

- (a) Find the bilinear transformation that maps the points $z_1 = -i$, $z_2 = 0$, $z_3 = i$ into the points $w_1 = 0$, 7 $w_2 = -1$ and $w_3 = \infty$.
 - Find the fixed points of the bilinear transformation w = (z 1)/(z + 1).

Evaluate $\int_C \frac{e^{2z}}{(z+1)^4} dz$ where C is the circle |z|=2, using complex integration formula. 8

- Represent the function $f(z) = \frac{4z+3}{z(z-3)(z-2)}$ as Laurent series: 9
 - (i) With in |z| = 1. (ii) In the annulus region |z| = 2 and |z| = 3. (iii) Exterior to |z| = 3.

- Apply the calculus of residues to evaluate $\int_0^{2\pi} \frac{d\theta}{2-\sin\theta}$. 10
- (a) Evaluate $\int_{|z|=\frac{1}{2}} \frac{dz}{(z-1)(z+2)^2} = 0$ using Residue theorem.
 - (b) Evaluate $\oint_C \frac{z^2}{z^2 jz + 2} dz$ where C is |z| = 3/2, traversed counterclockwise. **www.FirstRanker.com**