Code: 15A99301

B.Tech II Year II Semester (R15) Regular Examinations May/June 2017
 BASIC ELECTRICAL \& ELECTRONICS ENGINEERING

(Mechanical Engineering)
Time: 3 hours
Max. Marks: 70

Answer all the questions (Use single answer booklet only)

 PART - A
 UNIT - I

1 (a) State the Kirchhoff's voltage law and current law and explain with an example.
(b) Find the total resistance between A\&B terminals for the given network.

2 (a) State and explain Norton's theorem.
(b) With suitable example, explain how the star connected network is transformed to delta.

3 (a) Explain the applications of different types OfD.C motors.
(b) A 4-pole dc shunt generator having a field and armature resistance of 100Ω and 0.2Ω respectively supplies parallel connected 100 number of $200 \mathrm{~V}, 40 \mathrm{~W}$ lamps. Calculate the armature currents and generated emf. Allow 1 V per bruśs contact drop.

OR
4 (a) With neat sketches, explain how the DC Generators are classified.
(b) A 500 V shunt motor runs at its normal speed of 250 rpm when the armature current is 200 A . The resistance of armature is 0.12Ω. Calculate the speed when a resistance is inserted in the field reducing the shunt field to 80% of normal value, and the armature current is 100 A .

UNIT - III

5 (a) Derive an expression for the induced emf of a transformer.
(b) A 3-phase, 6-pole, 50 Hz induction motor has a slip of 1% at no load and 3% at full load. Find: (i) No load speed. (ii) Full load speed. (iii) Frequency of rotor current on full load.

OR

6 (a) Explain the principle and operation of three phase induction motors.
(b) The maximum flux density in the core of $250 / 3000 \mathrm{~V}, 50 \mathrm{~Hz}, 1$-phase transformer is $1.2 \mathrm{~Wb} / \mathrm{m}^{2}$. If the emf per turn is 8 V , determine: (i) Primary and secondary turns. (ii) Area of the core.

Contd. in page 2

PART - B

UNIT - I

Draw the circuit diagram of FWBR and explain its operation with the help of input and output waveforms and derive the ripple factor.

OR

8 Draw VI characteristics of PN junction diode and the reverse saturation current of a Silicon PN junction diode is $10 \mu \mathrm{~A}$. Calculate the diode current for the forward bias voltage of 0.6 V at room temperature.

> UNIT - II

Explain the input and output characteristics of a common collector transistor configuration.
OR
A transistor has $\mathrm{I}_{\mathrm{b}}=100 \mu A$ and $\mathrm{I}_{\mathrm{C}}=2 \mathrm{~mA}$, find: α, β, I_{e} and if I_{b} changes by $+25 \mu A$ and I_{C} changes by 0.6 mA , then find the new value of β.

UNIT - III
What is the function of oscillator? How the various oscillators are classified? Explain about LC tuned type of oscillators.

OR
Explain about inverting and non-inverting op-amps.

