B.Tech II Year II Semester (R15) Regular Examinations May/June 2017
 SWITCHING THEORY \& LOGIC DESIGN
 (Electronics and Communication Engineering)

Time: 3 hours
Max. Marks: 70
PART - A
(Compulsory Question)
1 Answer the following: ($10 \times 02=20$ Marks $)$
(a) Convert (0.515$)_{10}$ to octal.
(b) What you mean by weighted code?
(c) What are the universal gates? Why they are called universal gates?
(d) Find the minterm expansion of $f(a, b, c, d)=a^{\prime}\left(b^{\prime}+d\right)+a c d^{\prime}$.
(e) Explain binary subtractor.
(f) What are the applications of multiplexers?
(g) Write the differences between Latches and flip flops?
(h) Draw the circuit of Johnsons counter.
(i) Write the classification of semiconductor memories?
(j) Give the comparison between ROM and PROM.

PART - B

(Answer all five units, $5 \times 10=50$ Marks)
(a) $A^{\prime} C^{\prime}+A B C+A C^{\prime}$.
(b) $\left(A^{\prime}+C\right)\left(A^{\prime}+C^{\prime}\right)\left(A+B+C^{\prime} D\right)$.

OR 2 s complement notation in binary arithmetic?
OR

Convert the following numbers as indicated:
(i) $(4350)_{5}=()_{2}$
(ii) $(11010011)_{2}=()_{16}$
(iii) $(552)_{6}=()_{8}$
(iv) $(1001001.011)_{2}=()_{10}$
(v) $(2 A C 5 . D)_{16}=()_{10}$

Simplify the following Boolean expressions to a minimum number of literals: Draw the Logic diagram using NAND gates.

UNIT - III

Design a 4-bit comparator using four 1-bit comparator modules.
OR

UNIT - IV

OR
Convert T-flip flop into D, JK and SR flip flop.
UNIT - V

Why are complements used in binary arithmetic? What are the advantages and disadvantages of using

5 Simplify the following Boolean function to a minimum number of literals. $F(A, B, C)=\Sigma(1,4,5,6,7)$.

Implement 64×1 multiplexer with four 16×1 and one 4×1 multiplexer (use only block diagram).

Draw the logic diagram of a JK flip flop and using excitation table, explain its operation.

Implement the following Boolean functions using a PAL that has four sections with three product terms each: $F_{1}(A, B, C, D)=\sum(2,12,13)$ and $F_{2}(A, B, C, D)=\sum(7,8,9,10,11,12,13,14,15)$.

OR

