B.Tech III Year I Semester (R09) Supplementary Examinations June 2017 DYNAMICS OF MACHINERY
 (Mechanical Engineering)

Time: 3 hours
Max. Marks: 70

Answer any FIVE questions

All questions carry equal marks
1 A uniform disc having a mass of 8 kg and a radius of gyration of 150 mm is mounted on one end of a horizontal arm of length 200 mm . the other end of the arm can rotate freely in a universal bearing. The disc given a clockwise spin of 250 rpm as seen from the disc end of the arm. Determine the motion of the disc if the arm remains horizontal.

Sketch a Hartnell governor. Describe its function and deduce a relation to find the stiffness of the spring.

6 (a) A shaft carries five masses $m_{1}, m_{2}, m_{3}, m_{4}$ and m_{5} which revolve at the same radius in planes which are equidistant one from another. The magnitudes of the masses in planes 1, 3, and 4 are 40 kg , 40 kg and 80 kg respectively. Determine the masses in planes 2 and 5 and their rotating balance.
(b) Why is balancing necessary for rotors of high sped engines?

7 A single cylinder horizontal engine runs at 120 rpm . The length of the stroke is 400 mm . the mass of the revolving parts assumed concentrated at the crank pin is 100 kg and mass of the reciprocating parts is 150 kg . Determine the magnitude of the balancing mass required to be placed opposite to the crank at a radius of 150 mm which is equivalent to all the revolving and $2 / 3$ rd of the reciprocating masses. If the crank turns 30° from the inner dead centre, find the magnitude of the unbalanced force due to the balancing mass.

8 (a) What is the logarithmic decrement? Derive the relation for the same.
(b) What do you mean by the steady-state response of the system in case of forced vibration?

