

www.FirstRanker.com

B.Tech III Year I Semester (R09) Supplementary Examinations June 2017 SWITCHING THEORY & LOGIC DESIGN

(Mechatronics)

Time: 3 hours

Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 A receiver with even parity hamming code receives the data 1110110. Determine the correct code.
- 2 (a) Convert the given expression into canonical SOP form;
 - (i) f = AB+BC+CA
 - (ii) f = A + AB + ABC.
 - (b) $F(A, B, C, D) = \overline{B}D + \overline{A}D + BD$ express them as SOP and POS forms.
- 3 Obtain minimal SOP expression for the logic function $F = \Sigma m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14)$ using K-map and realize using NOR gates.
- 4 Design a combinational logic circuit for BCD-to-seven segment decoder.
- 5 Implement the given functions using PAL: (i) $Y_0 = ABCD$. (ii) $Y_1 = \overline{A} \cdot B \cdot \overline{C} + ABC + AC + AB\overline{C}$ (iii) $Y_2 = \overline{A}BC\overline{D} + \overline{A}BCD + ABCD$ (iv) $Y_3 = \overline{A}BC\overline{D} + \overline{A}BCD + ABCD + ABC\overline{D}$
- 6 Design a 3-bit synchronous counter.
- 7 Determine the minimal state equivalent of the state table given below using partition technique. Also determine the minimum length of sequence that distinguishes state B from state C.

PS N	NS,Z	
	X=0	X=1
А	A,0	E,1
В	A,1	E,1
С	B,1	F,1
D	B,1	F,1
E	C,0	G,0
F	C,0	G,0
G	D,0	H,0
Н	D,0	H,0

8 Obtain the ASM charts for the following state transitions: If X = 1, control goes from T_1 to T_2 and then to T_3 . If X=0 control goes from T_1 to T_3 .