B.Tech III Year I Semester (R09) Supplementary Examinations June 2017 SWITCHING THEORY \& LOGIC DESIGN

(Mechatronics)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 A receiver with even parity hamming code receives the data 1110110. Determine the correct code.
(a) Convert the given expression into canonical SOP form;
(i) $f=A B+B C+C A$
(ii) $f=A+A B+A B C$.
(b) $F(A, B, C, D)=\bar{B} D+\bar{A} D+B D$ express them as SOP and POS forms.

7 Determine the minimal state equivalent of the state table given below using partition technique. Also determine the minimum length of sequence that distinguishes state B from state C .

PS	NS, Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{A}, 0$	$\mathrm{E}, 1$
B	$\mathrm{A}, 1$	$\mathrm{E}, 1$
C	$\mathrm{B}, 1$	$\mathrm{~F}, 1$
D	$\mathrm{B}, 1$	$\mathrm{~F}, 1$
E	$\mathrm{C}, 0$	$\mathrm{G}, 0$
F	$\mathrm{C}, 0$	$\mathrm{G}, 0$
G	$\mathrm{D}, 0$	$\mathrm{H}, 0$
H	$\mathrm{D}, 0$	$\mathrm{H}, 0$

Obtain minimal SOP expression for the logic function $F=\operatorname{\Sigma m}(0,1,2,4,5,6,8,9,12,13,14)$ using K-map and realize using NOR gates.

Design a combinational logic circuit for BCD-to-seven segment decoder.

Implement the given functions using PAL:
(i) $Y_{0}=A B C D$.
(ii) $Y_{1}=\bar{A} \cdot B \cdot \bar{C}+A B C+A C+A B \bar{C}$
(iii) $Y_{2}=\bar{A} B C \bar{D}+\bar{A} B C D+A B C D$
(iv) $Y_{3}=\bar{A} B C \bar{D}+\bar{A} B C D+A B C D+A B C \bar{D}$

Design a 3-bit synchronous counter.

Obtain the ASM charts for the following state transitions:

If $X=1$, control goes from T_{1} to T_{2} and then to T_{3}. If $X=0$ control goes from T_{1} to T_{3}.

