Code: 9A14501
B.Tech III Year I Semester (R09) Supplementary Examinations June 2017

NUMERICAL METHODS
(Mechatronics)
Time: 3 hours
Answer any FIVE questions
All questions carry equal marks

1 (a) Find the root of the equation $x^{3}-2 x-5=0$ which lies near $x=2$.
(b) Find a real root of the equation $x=e^{-x}$, using the Newton-Raphson method.

2 (a) Solve the system of equations by Jacobi's iteration method.
$14 x_{1}-3 x_{2}=8: \quad x_{1}+5 x_{2}=11$
(b) Use Gauss-Seidal iteration method to solve the system.
$10 x+y+z=12$
$2 x+10 y+z=13$
$2 x+2 y+10 z=14$

3 (a) Find the Newton's forward difference interpolating polynomial for the data

x	0	1	2	3
$f(x)$	1	3	7	13

(b) Given $x=1,2,3,4$ and $f(x)=1,2,9,28$ respectively find $f(3.5)$ using Lagrange method.

4 (a) Fit a polynomial of second degree to the data points given in the following table:

x	0	1.0	2.0
y	1.0	6.0	17.0

(b) Fit the exponential curve $\mathrm{y}=\mathrm{ae}{ }^{\mathrm{bx}}$ to the following data.

$\mathrm{x}:$	2	4	6	8
$\mathrm{Y}:$	25	38	56	84

Evaluate $\int_{0}^{1} \sqrt{1+x^{3}} d x$ taking $\mathrm{h}=0.1$ using
(a) Simson's $1 / 3$ rule.
(b) Trapezoidal rule.

6 Obtain the values of y at $x=0.1,0.2$ using Runge-Kutta method of:
(i) Second order.
(ii) Third order. (iii) Fourth order.

Find the Eigen values and the corresponding Eigen vectors of $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.
Find the values of $u(x, y)$ satisfying the Laplace's equation $\nabla^{2} u=0$ at the pivotal points of a square region with boundary values as shown in the following figure.

