www.FirstRanker.com

Code: 13A05404

B.Tech III Year I Semester (R13) Supplementary Examinations June 2017

FORMAL LANGUAGES & AUTOMATA THEORY

(Information Technology)

Time: 3 hours Max. Marks: 70

PART - A

(Compulsory Question)

- 1 Answer the following: $(10 \times 02 = 20 \text{ Marks})$
 - (a) Define DFA. Construct a DFA recognizing the language generated by (a+b)*b.
 - (b) Convert the following Moore machine into Mealy machine.

	_	9	
State	Input		outout.
	а	b	output
Α	Α	В	0
В	В	В	1

- (c) Define a regular expression. Write regular expression generating the language of all strings over the alphabet {a, b} and end with ab.
- (d) Write any four algebraic laws (identities) for regular expressions.
- (e) Show the leftmost derivation and the corresponding parse tree for the string a+a*a using the following CFG.

$$E \rightarrow E + E/E */a$$
.

- (f) Define the Chomsky normal form for a CFG. Write CFG equivalent to the following CFG and is in CNF. $A \rightarrow Aa/Ba/a$ $B \rightarrow Bb/Ba/b$
- (g) Draw transition diagram for the following PDA.

$$\delta(A, a, Z_0) = (A, a, Z_0) \qquad \delta(A, b, a) = (B, a)$$

$$\delta(B,a,b) = (B,a) \qquad \qquad \delta(B,b,b) = (A,a)$$

(h) Construct a PDA which can recognize the language generated by the following CFG.

$$S \to A/B$$
 $A \to Aa/a$ $B \to Bb/b$

- (i) What is Post's correspondence problem? Give an example.
- (j) Define a Turing machine. Draw the transition graph for a TM recognizing.

$$L = \{a^i b^j / i, j > 0\}$$

PART - B

(Answer all five units, 5 X 10 = 50 Marks)

UNIT - I

- 2 (a) Prove that 1+3+5+.....r = n², for all n>0, where r is an odd integer and n is the number of terms in the sum.
 - (b) Describe the Chomsky hierarchy of languages.

OR

3 Construct DFA equivalent to the following NFA.

State	Input		
	0	1	
Q_0	$\{Q_0, Q_1\}$	Q_0	
Q_1	Q_2	Q_1	
Q_2	Q_3	Q_3	
Q_3	ϕ	Q_2	

Q₀ is the initial state

Q₃ is the final state

Show the moves of the DFA and NFA for the string 1000.

Contd. in page 2

UNIT - II

4 (a) State and prove Arden's theorem. Using Arden's theorem, find the regular expression generating the language recognized by the following FA.

ge .eeeg <u>=</u> eee)e .eeg				
State	Input			
	0	1		
Α	{A, B}	ϕ		
В	С	{A, B}		
С	В	ϕ		
A is the initial	ial state and C is the final state.			

(b) Write any five decision problems and the steps to solve them for regular languages.

OR

5 (a) State and prove pumping lemma for regular languages. Prove that the language of palindromes over {a, b} is not regular using pumping lemma.

(b) Write steps to check the equality of two FAs. Use the procedure and check the equivalence.

	а	b
Q_0	Q_1	Q_0
Q_1	Q_1	Q_2
Q_2	Q_2	Q_2
Q_0 is initial state and Q_2 is final state.		

	а	b
Α	В	С
В	D	E
С	F	G
D	D	E
E	E	E
F	D	E
G	F	G
A is initial state and E is final state.		

UNIT - III

6 (a) Let G be the grammar $S \to 0B/1A$, $A \to 0/0S/1AA$, $B \to 1/1S/0BB$. For the string 00110101, find: (i) The leftmost derivation. (ii) The rightmost derivation. (iii) The derivation tree.

(b) Let G be $S \to AB, A \to a, B \to C/b, C \to D, D \to E$ and $E \to a$. Eliminate unit productions and get an equivalent grammar.

OR

7 (a) Write the procedure to convert a given CFG into equivalent grammar in CNF. Apply the procedure and convert the grammar with following production into CNF.

 $S \rightarrow S/[S+)S]/p/q$

(b) Define Greibach normal form for a CFG. Reduce the following CFG into GNF.

$$S \rightarrow ABb/a$$
 $A \rightarrow aaA$ $B \rightarrow bAb$

UNIT - IV

Define a PDA and language of a PDA. Construct a PDA for the following language.

 $L = \{a^i b^j c^k / i, j, k > 0 \ and \ j = i + k\}$. Show the moves of the PDA for the string aabbbbcc using instantaneous description.

OR

Find a CFG which generates the language $L = \{a^n b^m c^n / m, n > 0\}$. Construct a PDA M from the grammar designed by you. Show the derivation and the moves of the PDA for the string aabcc.

UNIT - V

10 (a) Construct a Turing machine which can accept the strings of the following language.

 $L = \{x \in \{a, b\} * / x \text{ is a palindrome} \}$. Show the moves of the TM for the string aba.

(b) Describe about the multitape TMs with suitable illustrations.

OR

11 Write short notes on the following:

- (a) Universal Turing machine.
- (b) Linear bounded automat.
- (c) The halting problem of TM.
