B.Tech III Year I Semester (R13) Supplementary Examinations June 2017

FORMAL LANGUAGES \& AUTOMATA THEORY
(Information Technology)
Time: 3 hours
Max. Marks: 70

PART - A

(Compulsory Question)

1 Answer the following: ($10 \times 02=20$ Marks)
(a) Define DFA. Construct a DFA recognizing the language generated by (a+b)*b.
(b) Convert the following Moore machine into Mealy machine.

State	Input		output
	a	b	
A	A	B	0
B	B	B	1

(c) Define a regular expression. Write regular expression generating the language of all strings over the alphabet $\{\mathrm{a}, \mathrm{b}\}$ and end with ab .
(d) Write any four algebraic laws (identities) for regular expressions.
(e) Show the leftmost derivation and the corresponding parse tree for the string a+a*a using the following CFG.

$$
E \rightarrow E+E / E * / a .
$$

(f) Define the Chomsky normal form for a CFG. Write CFG equivalent to the following CFG and is in CNF.

$$
A \rightarrow A a / B a / a \quad B \rightarrow B b / B a / b
$$

(g) Draw transition diagram for the following PDA.

$$
\delta\left(A, a, Z_{0}\right)=\left(A, a, Z_{0}\right) \quad \delta(A, b, a)=(B, a)
$$

$$
\delta(B, a, b)=(B, a) \quad \delta(B, b, b)=(A, a)
$$

(h) Construct a PDA which can recognize the language generated by the following CFG.
$S \rightarrow A / B$
$A \rightarrow A a / a \quad B \rightarrow B b / b$
(i) What is Post's correspondence problem? Give an example.
(j) Define a Turing machine. Draw the transition graph for a TM recognizing.

$$
L=\left\{a^{i} b^{j} / i, j>0\right\}
$$

PART - B

(Answer all five units, $5 \times 10=50$ Marks)

UNIT - I

2 (a) Prove that $1+3+5+\ldots \ldots \ldots+r=n^{2}$, for all $n>0$, where r is an odd integer and n is the number of terms in the sum.
(b) Describe the Chomsky hierarchy of languages.

OR
3 Construct DFA equivalent to the following NFA.

State	Input	
	0	1
Q_{0}	$\left\{\mathrm{Q}_{0}, \mathrm{Q}_{1}\right\}$	Q_{0}
Q_{1}	Q_{2}	Q_{1}
Q_{2}	Q_{3}	Q_{3}
Q_{3}	ϕ	Q_{2}
Q_{0} i is the initial state Q_{3} is the final state		

Show the moves of the DFA and NFA for the string 1000.

UNIT - II

4 (a) State and prove Arden's theorem. Using Arden's theorem, find the regular expression generating the language recognized by the following FA.

State	Input	
	0	1
A	$\{A, B\}$	ϕ
B	C	$\{A, B\}$
C	B	ϕ
A is the initial state and C is the final state.		

(b) Write any five decision problems and the steps to solve them for regular languages.

OR
5 (a) State and prove pumping lemma for regular languages. Prove that the language of palindromes over $\{a, b\}$ is not regular using pumping lemma.
(b) Write steps to check the equality of two FAs. Use the procedure and check the equivalence.

	a	b
Q_{0}	Q_{1}	Q_{0}
Q_{1}	Q_{1}	Q_{2}
Q_{2}	Q_{2}	Q_{2}
Q_{0} is initial state and Q_{2} is final state.		

	a	b
A	B	C
B	D	E
C	F	G
D	D	E
E	E	E
F	D	E
G	F	G
A is initial state and E is final state.		

UNIT - III

6 (a) Let G be the grammar $S \rightarrow 0 B / 1 A, A \rightarrow 0 / 0 S / 1 A A, B \rightarrow 1 / 1 S / 0 B B$. For the string 00110101, find: (i) The leftmost derivation. (ii) The rightmost derivation. (iii) The derivation tree.
(b) Let G be $S \rightarrow A B, A \rightarrow a, B \rightarrow C / b, C \rightarrow D, D \rightarrow E$ and $E \rightarrow a$. Eliminate unit productions and get an equivalent grammar.

7 (a) Write the procedure to convert a given CFG into equivalent grammar in CNF. Apply the procedure and convert the grammar with following production into CNF.

$$
S \rightarrow \neg S /[S+) S] / p / q
$$

(b) Define Greibach normal form for a CFG. Reduce the following CFG into GNF.

$$
S \rightarrow A B b / a \quad A \rightarrow a a A \quad B \rightarrow b A b
$$

UNIT - IV

10 (a) Construct a Turing machine which can accept the strings of the following language. $L=\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\} * / \mathrm{x}$ is a palindrome $\}$. Show the moves of the TM for the string aba.
(b) Describe about the multitape TMs with suitable illustrations.

OR

11 Write short notes on the following:
(a) Universal Turing machine.
(b) Linear bounded automat.
(c) The halting problem of TM.

