B.Tech III Year II Semester (R09) Supplementary Examinations May/June 2017

POWER SYSTEM ANALYSIS
(Electrical \& Electronics Engineering)
Time: 3 hours
Max. Marks: 70
Answer any FIVE questions
All questions carry equal marks

1 (a) What is a primitive network and represent its forms? Prove $Y_{B u s}=A^{T}[Y] A$ using singular transformation.
(b) Form the $Y_{B u s}$ for the given network in table.

Element	R,p.u	X,p.u
$1-2$	0.05	0.15
$1-3$	0.10	0.30
$2-3$	0.15	0.45
$2-4$	0.1	0.30
$3-4$	0.05	0.15

2 (a) Explain the algorithm for the addition and removal of lines in power system.
(b) A two - Bus system has $Z_{\text {Bus }}=\left[\begin{array}{cc}j 0.11 & j 0.045 \\ j 0.045 & j 0.13\end{array}\right]$ p.u if an impedance $Z \mathrm{~b}=j 0.06 \mathrm{p} . \mathrm{u}$. is connected between buses 1 and 2 , what is the new $Z_{\text {Bus }}$.

3 Derive the basic equations for load flow studies and also write the assumptions and approximations to get the simple equations.

4 Consider the single line diagram of a powersystem shown in below. Take bus-1 as slack bus and the $Y_{B u s}$ matrix is given below.

$$
Y_{B U S}=\left[\begin{array}{ccc}
2-j 15 & 21+j 6 & -1.5+j 8 \\
-1+j 6 & 4-j 10 & -3+j 6 \\
-1.5+j 8 & -3+j 6 & 5-j 6
\end{array}\right]
$$

Scheduled generation and loads are as follows:

Bus no.	Generation		Load		Assumed bus voltages
	MW	MVAR	MW	MVAR	
1	0	0	0	0	$1.04+\mathrm{j} 0.0$
2	0	0	250	150	$1.0+\mathrm{j} 0.0$
3	100	70	50	20	$1.0+\mathrm{j} 0.0$

Using Newton-Raphson method, obtain the bus voltages at the end of 1st iteration.

Obtain pu impedance diagram of the power system of figure below. Choose base quantities as 15 MVA and 33 KV .
Generator: 30 MVA, $10.5 \mathrm{KV}, \mathrm{X}^{\prime \prime}=1.6$ ohms.
Transformers T1 \& T2: 15 MVA, 33/11 KV, X = 15 ohms referred to HV transmission line: 20 ohms/phase.
Load: 40 MW, $6.6 \mathrm{KV}, 0.85$ laging p.f.

For the system shown in figure below. A LLG fault occurs at point F. Find fault current.

A salient pole synchronous generator is connected to an infinite bus via a line. Derive an expression for electrical power output of the generator and draw $p-\delta$ curve.

Explain step-step method of solving the swing equation. Also write assumptions made.

