www.FirstRanker.com

Code: 9A14601

B.Tech III Year II Semester (R09) Supplementary Examinations May/June 2017

SIGNAL PROCESSING TECHNIQUES

(Mechatronics)

Time: 3 hours Max. Marks: 70

Answer any FIVE questions All questions carry equal marks

- 1 (a) Briefly explain about exponential and sinusoidal signals.
 - (b) Draw the block diagram of DSP system and explain significance of each block.
- 2 (a) Explain briefly impulse sampling. What is the Nyquist rate and Nyquist interval?
 - (b) Why do you need analog to digital converters and discuss any one type of ADC?
- 3 (a) Explain the properties of the ROC of Z transforms.
 - (b) Find the inverse Z-transform of $X(Z) = \frac{Z}{(Z+2)(Z-3)}$ when ROC is $\{2 < |Z| < 3\}$.
- 4 (a) State and prove the time shifting property of the DFT.
 - (b) Find inverse DFT of $X(k) = \{1,2,3.4\}$.
- 5 (a) State and prove the Parseval's relation and also give its physical interpretation.
 - (b) State and prove two properties of convolution.
- 6 (a) Discuss and draw various IIR realization structures like direct form I, parallel and cascade forms.
 - (b) Obtain the cascade form realization of the given non-recursive filter.

$$H(z) = 1 + 8z^{-1} + 21z^{-2} + 35z^{-3} + 28z^{-4} + 15z^{-5}$$

- 7 (a) Explain the impulse invariance method of deriving IIR digital filter from corresponding analog filter.
 - (b) Convert the analog filter with system function given by $H(s) = s + \frac{0.1}{(s+0.1)^2} + 16$, using impulse invariance method.
- 8 (a) Compare and contrast Butterworth and Chebyshev approximations.
 - (b) What is a linear phase filter? What conditions are to be satisfied by the impulse response of an FIR system in order to have a linear phase?
