R13 Code No: 114AG JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year II Semester Examinations, May - 2016 FORMAL LANGUAGES AND AUTOMATA THEORY (Computer Science and Engineering) **Time: 3 Hours** Max. Marks: 75 Note: This question paper contains two parts A and B. Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions. PART - A (25 Marks) 1.a) Define a non-deterministic model with example. [2] State and explain Moors Machine. [3] b) Give an example to explain the concept of regular set. [2] c) Discuss about right linear and left linear grammars. d) [3] :[2]::: Give an example for context free language: :::: Write a context free grammar for the language {0ⁿ1ⁿ/n>=1}. [3]... When do you say that the Turing machine accepts a string. [2] g) What are the components of a Turing machine? [3] h) [2] i) State and explain universal Turing machine. Give an example to explain NP hard and NP Complete problems. [3] (50 Marks) 2. Define DFA and Regular expression. DFA accepts all strings corresponding to the expression 1*01(0+11)*. Also explain how to convert a regular expression to Convert the following regular expressions to NFA with epsilon transitions a) 0*+1101 b) (0+1)*[5+5]Show that if L is regular grammar the L is a regular set. [10]OR Explain various components of context free grammar and derivation tree in detail. When do you say a language L is unambiguous? Show that the language 6. $L=\{a^nb^n|n>=1\}$ is unambiguous. Show that the L is context free language, then there exists a Push down automata

M such that L=N(M).

8	Show that any no undecidable?	on-trivial prop	perty of the recursive	ly enumerab	le language is [10]	***
9.	OR Design a Turing machine to accept the set of all palindrome over {0,1}*. Draw a transition diagram for the Turing machine of the above. [10]					
10,	State and explain i	n detail about	P and NP problems.	X 6 96X 6 6 6 8 8 6 8 X 8 8 7 X X 8 1 6 X 6	[10]	* * * * * * * * * * * * * * * * * * *
11.	Explain what unde	ecidable proble	em is and post correspo	ondence prob	lem? [10]	
K9	K9	K9	00O00	K9	K9	K9
K9	K9	K9		K9	K9	K9
, K9	KO	K9		KS	K9	K9
KÐ	* K9	K9	K9	K9	K9	K9
K9	K9	K9	KS	K9	K9	K9
K9	K9	K9	K9	K9	K9	K9
KS	K9	K9	K9	K9	K9	K9