**

R13

Cöde No: 114CV LANGE LANG B.Tech II Year II Semester Examinations, May - 2016 **ELECTRONIC CIRCUIT ANALYSIS**

(Common to ECE, EIE, ETM)

.** :***	3 Hours Max. Marks: 75	* * * * * *							
Nöte:	This question paper contains two parts A and B.	*****							
	Part A is compulsory which carries 25 marks. Answer all questions in Part A.								
	Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.								
K N N N N N N N N N N N N N N N N N N N	PART A (25 Marks)								
1.a)	What is the main application of CC amplifier and Why? [2]								
b)	What are the conditions for approximate h-parameter model? [3]								
c)	What is base-spreading resistance? [2] What is the bypass capacitor and why it is connected in CE amplifier? [3]								
(d) (e)	What is the bypass capacitor and why it is connected in CE amplifier? [3] What is the effect of negative feedback on stability? [2]	* * * * * * * * * * * * * * * * * * *							
f)	What is Barkhausen criterion? [3]								
g)	What are the advantages of class-B operation? [2]								
h) i)	What is harmonic distortion? [3] What are the properties of Q of a tuned circuit? [2]								
: .· .j.).	What is the effect of cascading on double tuned amplifier? [3]	1							
* * * * * * * * * * * * * * * * * * *		M							
	PART-B (50 Marks)								
2.a)	Draw the CC amplifier and derive the expression for A ₁ , R ₂ , A ₂ , Y ₂ ,								
2.a) b)	Draw the CC amplifier and derive the expression for A_I , R_I , A_V , Y_O . A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms								
	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are	****							
	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1.000$ ohms. The h-parameters are $h_{ie} = 1.000$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25 \mu$ A/V: compute A_{i} , R_{i} , A_{V} .	KS							
	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1.000$ ohms. The h-parameters are $h_{ie} = 1.00$ K ohms, $h_{re} = 200$ × 10^{-4} , $h_{fe} = 50$ and $h_{oe} = 25$ μ Å/V: compute A_{i} , R_{I} , A_{V} , R_{o} using exact analysis.	KS							
	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1.000$ ohms. The h-parameters are $h_{ie} = 1.000$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25 \mu$ A/V: compute A_{i} , R_{i} , A_{V} .	KS							
b)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are $h_{ie} = 1.0$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25$ μ A/V: compute A_{I} , R_{I} , A_{V} , R_{o} using exact analysis. OR Derive the expression for the bandwidth of multistage amplifier. What is the use of transformer coupling in the output of multistage amplifier?	K9							
b)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are $h_{ie} = 1.0$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25$ μ A/V: compute A_1 , R_1 , A_2 , R_3 using exact analysis. OR Derive the expression for the bandwidth of multistage amplifier. What is the use of transformer coupling in the output of multistage amplifier?	K9 K9							
b)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are $h_{ie} = 1.0$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25$ μ A/V: compute A_L^i , R_L^i , A_{VR}^i , $A_{VR}^$	K9 K9							
3.a) b) b) 4.ä)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are $h_{ie} = 1.0$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25$ μ A/V: compute A_{i} , R_{i} , A_{i} ,	K9 K9							
b)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are $h_{ie} = 1.0$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25$ μ A/V: compute A_L^i , R_L^i , A_{VR}^i , $A_{VR}^$	K9 K9							
3.a) b) b) 4.ä)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1.000$ ohms. The h-parameters are $h_{ie} = 1.000$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25$ μ A/V: compute A_i , R_i , A_{V_i} , R_o using exact analysis. OR Derive the expression for the bandwidth of multistage amplifier. What is the use of transformer coupling in the output of multistage amplifier? What is the equation for the lower 3dB frequency of CE configuration due to emitter bypass capacitor. Given the following transistor measurements made at $I_C = 5$ M and $V_{CE} = 5$ V and at room temperature. $h_{ie} = 600$ ohms, $h_{fe} = 100$, $C_{b'c} = 3$ PF and $A_i = 10$ at 10 MHz.	K9 K9							
3.a) b) b) 4.ä)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1.000$ ohms. The h-parameters are $h_{ie} = 1.000$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25 \mu$ A/V: compute Ai, R_f ; Av. R_o using exact analysis. OR Derive the expression for the bandwidth of multistage amplifier. What is the use of transformer coupling in the output of multistage amplifier? Derive the equation for the lower 3dB frequency of CE configuration due to emitter bypass capacitor. Given the following transistor measurements made at $I_C = 5$ mA and $V_{CE} = 5$ V and at room temperature. $h_{ie} = 600$ ohms, $h_{fe} = 100$, $C_{b'c} = 3$ PF and $A_i = 10$ at 10 MHz. Find f_{β} , f_T , $C_{b'e}$, $r_{b'e}$ and $r_{bb'}$ of hybrid equivalent circuit in CE configuration.	K9 K9							
3.a) b) 4.ä) b)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are $h_{ie} = 1.0$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25$ μ A/V: compute A_i , R_i , A_{Ve} , R_o using exact analysis. [5+5] OR Derive the expression for the bandwidth of multistage amplifier. What is the use of transformer coupling in the output of multistage amplifier? Derive the equation for the lower 3dB frequency of CE configuration due to emitter bypass capacitor. Given the following transistor measurements made at $I_C = 5$ mA and $V_{CE} = 5$ V and at room temperature. $h_{ie} = 600$ ohms, $h_{fe} = 100$, $C_{b'c} = 3$ PF and $A_i = 10$ at 10 MHz. Find f_B , f_T , $C_{b'e}$, $r_{b'e}$ and $r_{bb'}$ of hybrid equivalent circuit in CE configuration.	K9 K9							
3.a) b) b) 4.ä)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are $h_{ie} = 1.0$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25$ μ A/V: compute Ai, R_I , A_{V} , R_o using exact analysis. [5+5] OR Derive the expression for the bandwidth of multistage amplifier. What is the use of transformer coupling in the output of multistage amplifier? [5+5] Derive the equation for the lower 3dB frequency of CE configuration due to emitter bypass capacitor. Given the following transistor measurements made at $I_C = 5$ mA and $V_{CE} = 5$ V and at room temperature. $h_{ie} = 600$ ohms, $h_{fe} = 100$, $C_{b'c} = 3$ PF and $A_i = 10$ at 10 MHz. Find f_B , f_T , $C_{b'e}$, $r_{b'e}$ and $r_{bb'}$ of hybrid equivalent circuit in CE configuration OR Derive the expression for voltage gain of a common source FET amplifier with	K9 K9							
3.a) b) 4.ä) b)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are $h_{ie} = 1.0$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25$ μ A/V: compute A_i , R_i , A_{Ve} , R_o using exact analysis. [5+5] OR Derive the expression for the bandwidth of multistage amplifier. What is the use of transformer coupling in the output of multistage amplifier? Derive the equation for the lower 3dB frequency of CE configuration due to emitter bypass capacitor. Given the following transistor measurements made at $I_C = 5$ mA and $V_{CE} = 5$ V and at room temperature. $h_{ie} = 600$ ohms, $h_{fe} = 100$, $C_{b'c} = 3$ PF and $A_i = 10$ at 10 MHz. Find f_B , f_T , $C_{b'e}$, $r_{b'e}$ and $r_{bb'}$ of hybrid equivalent circuit in CE configuration.	K9 K9							
3.a) b) 4.ä) b)	A CE amplifier is drawn by a voltage source of internal resistance $R_S = 800$ ohms and load impedance is a resistance $R_L = 1000$ ohms. The h-parameters are $h_{ie} = 1.0$ K ohms, $h_{re} = 2 \times 10^{-4}$, $h_{fe} = 50$ and $h_{oe} = 25$ μ A/V: compute A_i , R_L , A_V	K9 K9							

6:ä) b)	Show that bandwidth increases in negative feedback amplifiers. An amplifier has a input resistance of 200 K ohms, with a certain negative feedback introduced in the above amplifier the input resistance is found to be 20 M ohms and overall gain is found to be 1000. Calculate the loop gain and feedback factor. [5+5]								
::7: <u>::</u> :	OR Draw the circuit diagram of RC-Phase shift oscillator using BJT and derive the expressions for frequency of oscillations and condition on gain. [10]								
8.a)	Derive the expression for maximum conversion efficiency for a Transformer-coupled Class A power amplifier. List out the advantages of complementary symmetry configuration over push pull configuration.								
9.a)	OR Show that the maximum conversion efficiency of the idealized class B push-pull								
b)	circuit is 78.5%. For an ideal class B transistor amplifier the collector supply voltage V_{cc} and the effective load resistance $R_L = (N_1/N_2)^2 R_L$ are fixed as the base current excitation is varied. Show that the collector dissipation P_c is zero at no signal, rises as V_m increases and passes through a maximum at $V_m = 2Vcc/\pi$. [5+5]								
10.a) b)	Discuss the necessity of stabilization circuits in tuned amplifiers. [7+3]								
	Draw the equivale		OR : ::::::::::::::::::::::::::::::::::	ier and derive t	he expression [10]	KŞ			
00O00									
	* K9	K9	K9	K9	K9	K9			
K9	K9	K9	K9	K9	K9	K9			
K9	KS	K9	K9	K9	K9	K9			
KS	K9	K9	K9	K9	K9	K9			