Code No: 121AC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech I Year Examinations, May - 2016 **ENGINEERING MECHANICS**

(Common to CE, ME, MCT, MMT, AE, AME, MIE, PTE, CEE, MSNT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

	PART- A			(25 Marks)
.1.a)	State parallefogram law of forces.	A X A X X A X X A X X A X X A X X X X X	V A *AV A A A A A A A A A A A A A A A A A A A	[2]::
b)	What is free body diagram? Explain	l.		[3]
c)	What is cone of friction?			[2]
d)	What are different types of flat belt drives?			[3]
e)	What is the importance of center of gravity?			[2]
f.).	Explain transfer formula for product	* * * *	* × * * * * * * * * * * * * * * * * * *	[3]
:. g)	A 5kg mass drops 2m upon a spring whose modulus is 10N/mm. What will be the			
	speed of the block when the spring i			[2]
h)	The position of a particle which moves along a straight line is defined by			
	$x=t^3-6t^2-15t+40$. x is in meters, t is in seconds. Determine the distance travelled			
	by the particle from t=4sec and t=6s	sec.		[3]
: · · · i):	A 2HP motor of weight 18.5kg is mounted symmetrically on four identical			
* * * **	springs each of stiffness 200gm/mm. Determine the frequency and the time period			
	of vibration of the motor.			[2]
j)	A force of 500N is acting on a block of mass 50kg resting on a horizontal surface.			
	Determine its velocity after the block has travelled a distance of 10m. Coefficient			
14.	of kinetic friction is 0.5.			[3]
* * * * * * * * * * * * * * * * * * *	K9 K9	* * * * * * * * * * * * * * * * * * * *	× • • • × • × • × • × • × • × • × • × •	70 34 13 3
(E) (E)	PAR	I-R		50 Marks)

2. The system shown in figure 1 consists of four cables EA, EB, EC and ED joined together at E. Cable ED passes over a small frictionless pulley at D and is used to apply the 5kN force needed to place the container G in position shown. If the tension in cable EA is 4.5kN; determine the mass m of the container G.

Figure: 1

Figure 2 shows several identical smooth rollers of weight w each stacked on an inclined plane. Determine a) the maximum number of rollers which will lie in a single row as shown and b) all forces acting on roller A maximum number of rollers stacked in one row.

[5+5]

4. A 18kg mass is hung from a lever which rests against a 10° wedge at A and is supported by a frictionless hinge at C. Knowing that the coefficient of static friction is 0.25 at both surfaces of the wedge and that for the position shown in figure 3 the spring is stretched 100mm, determine a) the magnitude of the force P for which motion of the wedge is impending, b) the components of the corresponding reaction at C. [5+5]

5. A belt 100mm wide and 8mm thick is transmitting power at a belt speed of 1600m/minute. The angle of lap of the smaller pulley is 165° and coefficient of friction is 0.3. The maximum permissible stress in the belt is 2 N/mm² and the mass of the belt is 0.9kg/m; Find the power transmitted and the initial tension in the belt. Also find the maximum power that can be transmitted and the corresponding belt speed.

