

Code No: 115DU

R13

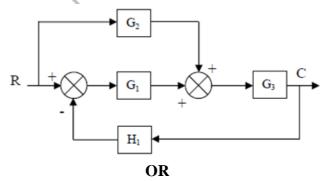
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech III Year I Semester Examinations, March - 2017 CONTROL SYSTEMS ENGINEERING (Common to ECE, ETM)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A


(25 Marks)

1.a)	Define transfer function. What are its limitations?	[2]
b)	Give classification of control systems.	[3]
c)	What is the difference between type and order of the system?	[2]
d)	What are the standard test signals	[3]
e)	What is the effect of adding poles to G(s) H(s) on the root loci?	[2]
f)	Write limitations of Routh's stability.	[3]
g)	Draw the pole zero location of lag compensator.	[2]
h)	Define phase margin and gain margin.	[3]
i)	Define Observability.	[2]
j)	Write Properties of State Transition Matrix.	[3]

PART - B

(50 Marks)

- 2.a) Illustrate at least two applications of feedback control systems.
 - b) Determine the transfer function C(S)/R(S) for the following block diagram. [5+5]

- 3.a) What is feedback? Explain the effects of feedback.
 - b) What are differences between block diagram reduction and signal flow graph reduction? [5+5]
- 4.a) Derive the time response of second order under damped system due to unit step input.
 - b) Why derivative controller is not used in control systems? What is the effect of PI controller on the system performance? [5+5]

[10]

5. Find the Error coefficients for step, ramp and parabolic inputs for unity feed-back system having the forward transfer function. [10]

$$G(s) = \frac{14(s+3)}{s(s+5)(s^2+2s+2)}$$

6. Sketch the root locus plot of a unity feedback system whose open loop T.F is [10]

$$G(s) = \frac{K(s^2-2s+2)}{(s+2)(s+3)(s+4)}.$$

7. The characteristic equations of two systems are given below

a)
$$S^4 + 21S^3 + 21S^2 + 36S + 20 = 0$$

b) $S^5 + 6S^4 + 3S^3 + 2S^2 + S + 1 = 0$
Find whether the systems are stable or not using RH Criterion.

8. The open loop transfer function of certain unity feedback control system is given by $G(S) = \frac{k}{s(s+4)(s+80)}$. It is desired to have the phase margin to be at least 33° and velocity error constant $K_V = 30 \text{ Sec}^{-1}$. Design a phase lag series compensator. [10]

OR

- 9. Sketch the Bode plot for the system $G(s) = \frac{25}{s(1+s)(1+0.1s)}$ Hence find gain cross over frequency and phase cross over frequency. [10]
- 10. Given $X(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x1(t) \\ x2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(t)$. Find the unit step response when, $X(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ [10]

OR

- 11.a) Discuss the significance of State Space Analysis.
 - b) Consider the matrix. Compute e. [5+5]

$$A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$$