Code No: 123CT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B.Tech II Year I Semester Examinations, March - 2017

DIGITAL LOGIC DESIGN
(Computer Science and Engineering)
Time: 3 Hours
Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A.
Part B consists of 5 Units. Answer any one full question from each unit.
Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART - A

(25 Marks)
1.a) Using 10 's complement subtract $72532-3250$.
b) State and prove the distributive property of Boolean algebra.
c) Define sum of products and product of sum.
d) Give the boolean expression for the following statement. Y is a 1 only if A is 1 and B is 1 or if a is 0 or B is 0 .
e) What is a multiplexer? What is the function of multiplexer select inputs? [2]
f) What is a combinational logic circuit? Explain the design procedure for combinational circuits.
g) What is a counter and what are the types of counters?
h) Draw the logic diagram for SR latch using two NOR gates.
i) How does static RAM cell differ from dynamic RAM cell?
j) Give the difference between RAM and ROM.

PART - B

(50 Marks)
2.a) Prove that $A B+(A C)^{\prime}+A B^{\prime} C(A B+C)=1$.
b) What is a Hamming code and encode data bits 0101 into a 7 -bit even parity Hamming code.
[5+5]

OR

3.a) Describe the floating point representation of numbers and determine the number of bits required to represent in floating point notation the exponent for decimal numbers in the range of $10^{ \pm 86}$
b) Give the comparison between 9's complement and 10's complement and perform the following subtraction by using 9 's complement method.
i) $18-06$
ii) $39-23$
4.a) Reduce the following function using K-Map Technique and implement using universal gate. $f(P, Q, R, S)=\Sigma m(0,1,4,8,9,10)+d(2,11)$
b) Design a logic circuits with inputs A, B, C so that output Y is high whenever A is zero or whenever $\mathrm{B}=\mathrm{C}=1$
5.a) Realize the following function $\mathrm{Y}=\mathrm{A}+\mathrm{BC} \overline{\mathrm{D}}$ using NAND gates only.
b) Minimize the following multiple output function using K-map
$\mathrm{f}_{1}=\Sigma \mathrm{m}(0,2,6,10,11,12,13)+\mathrm{d}(3,4,5,14,15)$
$\mathrm{f}_{2}=\Sigma \mathrm{m}(1,2,6,7,8,13,14,15)+\mathrm{d}(3,5,12)$
6.a) What is a decoder? Construct a 4×16 decoder with two 3×8 decoders.
b) Implement the following boolean function using 8:1 multiplexer.

$$
\begin{equation*}
\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\overline{\mathrm{A}} \mathrm{~B} \overline{\mathrm{D}}+\mathrm{ACD}+\overline{\mathrm{B}} \mathrm{CD}+\mathrm{A} \overline{\mathrm{C}} \mathrm{D} \tag{5+5}
\end{equation*}
$$

OR
7.a) Explain a binary parallel adder with look a head carry scheme.
b) Design a combinational logic circuit with 3-input variables that will produce a logic 1 output when more than one input variables are logic 1.
8.a) Design a 4-bit universal shift register and explain its operation?
b) Design a mealy type sequence detector to detect a serial input sequence of 101 .

OR

9.a) With the help of a neat block diagram explain the working of a JK Master-Slave flip-flop.
b) What are presettable counters? What is lockout of a counter? Show how to construct a MOD-13 counter using 74163 synchronous binary counter IC. [5+5]
10.a) Explain how a PLA is used for the realization of combinational function.
b) Describe the function of row-select decoder column-select decoder and output buffers in the ROM architecture.

OR

11.a) Design binary to Gray and Gray to Binary converters in a single PLA
b) Design a memory decoder to select 1 number of 16KB EPROM IC and 1 number of 32 KB RAM Ic.

