R13

Code No: 117CG

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech IV Year I Semester Examinations, March - 2017 DIGITAL CONTROL SYSTEMS

(Common to EEE, EIE)

Max. Marks: 75 Time: 3 Hours

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

Part- A (25 Marks)

1.a)	What is a pulse transfer function?	[2]
b)	Discuss in brief the mapping between s-plane and z-plane.	[3]
c)	Write down the properties of state transition matrix.	[2]
45		F23

State the conditions for the system to be state controllable and observable. [3] d)

.[2]... What is bilinear transformation? e) (f): What are the advantages of dead beat control? :[3]..:

[2] What are lag – lead compensators. g)

What are primary strips? [3] h)

What are the necessary and sufficient conditions for designing a state feedback controller i) through pole placement? [2]

Write the Ackermann's formula.

Part-B (50 Marks)

2.a) Given the Z-transforms

$$X(z) = \frac{z^{-1}}{(1-z^{-1})(1+1.3z^{-1}+0.4z^{-2})}$$

Determine the initial and final values of x (k). Also find x (k), in a closed form.

State and explain the sampling theorem. b)

[5+5]

State the limitations of Z- Transforms. 3.a)

Obtain the z-transform of . b)

i)
$$f(t) = t^2$$
 ii) for

$$f(t) = t^2$$
 ii) $f(t) = e^{-at}$ sinwt

- Explain the concept of controllability and observability of discrete time control system. 4.a)
- Derive necessary conditions to be satisfied for system to be controllable. b)

The pulse transfer function of digital control system is given by ...5.a)

$$G(z) = \frac{5z}{z^2 + 2z + 2}$$

Obtain a state space representation for the system.

[5+5]Obtain the state transition matrix for the above system. b)

- Using Jury's stability criterion find the range of K, for which the characteristic equation: (6,a) $Z^{3} + Kz^{2} + 1.5 Kz - (K+1) = 0$ is closed toop stable.
 - Write short notes on complementary strips. b)

[6+4]

Explain in brief the Routh Stability Criterion.

7.a

Explain the stability analysis of the closed loop system. b)

[5+5]

Explain the design procedure of digital PID controllers. 8.ä)

Explain assumption considered to design digital controllers through deadbeat response b) [5+5]method.

Consider the single input digital control system
$$X(k) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} X(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k)$$

Determine the state feedback matrix K such that the state feedback $\mu(k) = -KX(k)$, places the closed loop system poles at $0.3 \pm j0.3$.

- Draw the block diagram for digital system with a reduced order observer. 10.a)
 - Explain how reduced order observation is different from minimum order observation. b)

OR

State the salient steps involved in the design of state feedback controller through pole 11... placement with a suitable example.

---00000