R15

[5+5]

Code No: 123BY

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B. Tech II Year I Semester Examinations, March - 2017 ELECTROMAGNETIC FIELDS

(Electrical and Electronics Engineering)

T!	`	Electrical an	d Electronics Eng	meermg)	Max. Marks: 7	5			
Time:	3 Hours	Jerg, Le	uma, an	2007.200	Max. Marks. /	J			
er Mariera	TP1 1 12/4/10 12 12 12 12 12 12 12 12 12 12 12 12 12		vanta A Sind D						
Note:	This question paper co	ntains two p	aris A and D.	or all quastic	one in Dort A				
	Part A is compulsory								
	Part B consists of 5 Un								
	Each question carries	10 marks an	a may nave a, b, c	as sub ques	HOHS.				
and the	2009 St.	area area	DADE A		0000000				
· · · · · · · · · · · · · · · · · · ·		100	PART- A		(2)	Morka)			
4 \	G 1 11 1	6 1 4 1 1	. 0		(2:	Marks)			
1.a)	State coulomb's law o		_		_	[2]			
b)	Derive an expression for field due to a hollow conducting sphere. [3]								
c)	Obtain Ohm's law in p		.0			[2]			
d)	Define electric dipole	and dipole n	noment?		11	[3]			
(e)	State Biot-Savart's lav	V.				[2]			
f)	Derive an expression for MFI due to a straight current carrying filament. Use amper								
	circuital law.					[3]			
g)	What are the application					[2]			
h)	Define self-inductance					[3]			
i)	State Faraday's laws of	f electroma	gnetic induction.	777		[2]			
j)	Deduce an expression	for Maxwel	l's fourth equation	n.	4	[3]			
			PART-B		(=	0 N ()			
0)	P. 14. 1 . P. 11		2 1) 1041	-44:-1 :- X7-	(3)	0 Marks)			
2.a)	Find the electric Field	at a point (I	,-2, 1) m, if the po	otential is V	= 3x y + 2yz + 2x	.yz.			
: .b')	Derive the expression			ge.	J-1994	[5+5]			
Bas Ball	Non-Sof	line fulf	OR	W400 -11-0	3111				
3.a)	State and Explain the	Gauss's law			0 11	1.1 7.7			
b)	Derive an expression	on of a coaxial ca							
	Gauss Law.					[5+5]			
			0.00 1.00 1.0						
4.a)	Derive an expression				c finding	[C. []			
b)	Obtain boundary cond	litions between		1 Dielectric i	nterface.	[5+5]			
			OR						
5.a)	What is the behavior					5.5.53			
b)	Deduce the expression	n for potentia	al due to an electr	ic dipole?		[5+5]			
2000, 1200	2777 a.V.		200	2442241	25.25				
6.a)	Prove $div(B)=0$.			11 Lik					
b)	Derive an expression	for MFI due	to square current	carrying win	e at its centre.	[5+5]			
			OR						
7.a)	Obtain MFI due to a i	nfinite sheet	of surface curren	t density K	\overline{a}_{τ} .				
				J	4.4				

Discuss point form of Ampere's circuital law.

::8 _. a) b)	Obtain the expression for the inductance of a toroidal ring									
9.a) .b)	OR Derive the Expressions for Scalar and Vector magnetic potentials. Derive the expression for mutual inductance between a long straight wire and rectangular loop lying in the same plane. [5+5]									
10.a)	State and Explain Faraday's laws of electromagnetic induction in integral and point forms. A square coil with a loop area 0.01 m ² and 50 turns is rotated about its axis at right angle to a uniform magnetic field B = 1T. Calculate the instantaneous value of emf induced in the coil when its plane is: i) at right angle to the field ii) in the plane of the field iii) when the plane of coil is 45° to the field. [5+5]									
b)	In a material for what 10° t V _X V/m. Defrequency at which	termine the control they have equal	$ \begin{array}{c} $							
	26	Hox Sod	26							
			00000							
			<u> </u>							
26	26									
	26		26	26						
26					28					