

R16

Code No: 132AA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year II Semester Examinations, August/September - 2017 ENGINEERING PHYSICS – II

(Common to EEE, ECE, CSE, EIE, IT)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

1.a)	Explain Heisenberg's uncertainty principle.	[2]
b)	Give significance of wave function.	[3]
c)	What is direct and indirect band gap semiconductors.	[2]
d)	Explain the I-V characteristics of PN junction diode.	[3]
e)	Define Electric susceptibility and polarizability.	[2]
f)	What is internal field? Give an expression for Clausius -Mosotti relation.	[3]
g)	Define Magnetic field induction and Magnetic susceptibility.	[2]
h)	Give differences between soft and hard magnets.	[3]
i)	What is Quantum confinement?	[2]
i)	Describe any three processes by which nanomaterials are fachricated	[3]

PART-R

(50 Marks)

- 2.a) Explain de-Broglie hypothesis. Explain G.P. Thompson's experiment in support of this hypothesis.
 - b) Write the conclusion of Kronig-Penny model. Using this model show that the energy spectrum of an electron contains number of allowed states separated by forbidden bands.

[5+5]

OR

- 3.a) Describe the Davisson and Germer's experiment and explain how it enabled the verification of wave nature of matter.
 - b) Derive time independent schrodinger's wave equation for a free particle. [5+5]
- 4.a) Calculate the carrier concentration in n-type semiconductor.
- b) Explain the energy level diagram of a PN junction diode and the energy level diagram of biased PN junction. [5+5]

OR

- 5.a) Calculate the carrier concentration in intrinsic semiconductor.
 - b) Explain the diode equation.

[5+5]

[5+5]

b) Explain construction and working of TEM.

6.a)	Derive a relation between electronic polarization and electric succetibity of the d medium.	ielectric	
b)	Derive Clausius-Mosotti equation.	[5+5]	
OR			
7.a)	What is internal field? Describe Lorentz method to calculate the internal field of structure.	a cubic	
b)	Explain briefly Pyroelectericity, Piezoelectricity and ferro-electricity.	[5+5]	
8.a)	What is the origin of Magnetic moment? Define and derive an expression f	or Bohr	
,	Magnetron.		
b)	Explain superconductivity and give few properties of superconducting material.	What is	
	flux quantization and cooper pairs?	[5+5]	
OR			
9.a)	Explain Hysteresis curve based on domain theory.		
b)	What is Meissner Effect? Give few applications of superconductivity.	[5+5]	
10.a)	What are nanomaterials. How are they classified?		
b)	Explain construction and working of SEM.	[5+5]	
OR			
11.a)	Explain CVD and Ball milling method for synthesis of nanomaterials.		

---ooOoo---