R15

Code No: 123AH
JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B.Tech II Year I Semester Examinations, March - 2017
 MATHEMATICS-III

(Common to EEE, ECE, EIE, ETM)

Time: 3 Hours

Max. Marks: 75
Note: This question paper contains two parts A and B.
Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have $\mathrm{a}, \mathrm{b}, \mathrm{c}$ as sub questions.

PART- A

(25 Marks)
1.a) Find the particular integral of $x^{2} \frac{d^{2} y}{d x^{2}}-6 x \frac{d y}{d x}+10 y=x^{2}$.
b) Find the indicial equation of $x^{2} y^{\prime \prime}-2 x y^{\prime}-\left(x^{2}-2\right) y=0$.
c) Prove that $\int_{-1}^{1} P_{2}^{2}(x) d x=\frac{2}{5}$.
d) Prove that $J_{1}(0)=0$.
e) Find the value of 'a' if cosax sinhy is harmonic.
f) Find the analytic function whose real part is xy.
g) Find the residue of $\frac{2 z+3}{z^{2}-z-2}$ at $\mathrm{z}=-1$.
h) Expand $\frac{1}{3-z}$ when $|z|>3$ as Laurent series.
i) Prove that $w=C+z$ where Cis a complex constant is conformal at all points.
j) Find the fixed points of $\frac{z+i}{1+i z}$.

PART-B

2. Solve the differential equation $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+2 y=x \log x$.

OR

3. Solve the differential equation in series $\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0$ around $\mathrm{x}=0$.
4.a) Express $x^{2}+x+1$ in terms of Legendre Polynomials.
b) Prove that $\frac{d}{d x}\left(x^{n} J_{n}(x)\right)=x^{n} J_{n-1}(x)$.

OR
5.a) Prove that $(2 n+1) x P_{n}(x)=(n+1) P_{n+1}(x)+(n) P_{n-1}(x)$.
b) Prove that $J_{4}(x)=\left(\frac{48}{13}-\frac{8}{x}\right) J_{1}(x)+\left(1-\frac{24}{x^{2}}\right) J_{0}(x)$.
6.a) Find the analytic function whose real part is $\mathrm{e}^{-x}(\mathrm{x} \sin \mathrm{y}-\mathrm{y} \cos \mathrm{y})$.
b) Evaluate $\int_{C} \frac{d z}{(z-2)(z-4)}$ where C is $|z-3|=1 / 2$.

OR
7.a) If $\mathrm{f}(\mathrm{z})$ is an analytic function then show that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)|f(z)|^{2}=4\left|f^{\prime}(z)\right|^{2}$.
b) Evaluate $\int_{C} \frac{d z}{\left(z^{2}-4\right)(z+1)}$ where C is $|z|=3$.
8. Evaluate $\int_{0}^{2 \pi} \frac{d \theta}{2+\cos \theta}$ using residue theorem.
9. Evaluate using residue theorem $\int_{-\infty}^{\infty} \frac{x^{2} d x}{\left(x^{2}+1\right)\left(x^{2}+4\right)}$.
10.a) Under the transformation $w=\frac{z-i}{1-i z}$ find the image of the circle $|z|=1$.
b) Find the image of $|z-3 i|=3$ under the mapping $w=\frac{1}{z}$.

OR

11.a) Find the image of the region bounded by the lines $x=1, y=1, x+y=1$ under the transformation $w=z^{2}$.
b) Find the bilinear mapping which maps the points $\mathrm{z}=\infty, \mathrm{i}, 0$ into $0, \mathrm{i}, \infty$.

