

R15

Code No: 123AH

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2017 **MATHEMATICS-III**

(Common to EEE, ECE, EIE, ETM)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks) Find the particular integral of $x^2 \frac{d^2y}{dx^2} - 6x \frac{dy}{dx} + 10y = x^2$. 1.a) [2]

Find the indicial equation of $x^2y'' - 2xy' - (x^2 - 2)y = 0$.

b) [3] Prove that $\int_{1}^{\infty} P_2^2(x) dx = \frac{2}{5}$. c) [2]

Prove that $J_1(0) = 0$. d) [3]

Find the value of 'a' if cosax sinhy is harmonic. e) [2]

f) Find the analytic function whose real part is xy. [3]

Find the residue of $\frac{2z+3}{z^2-z-2}$ at z=-1. [2] g)

Expand $\frac{1}{3-z}$ when |z| > 3 as Laurent series. h) [3]

Prove that w = C + z where C is a complex constant is conformal at all points. i) [2]

Find the fixed points of $\frac{z+i}{1+iz}$ i) [3]

PART-B

(50 Marks)

Solve the differential equation $x^2 \frac{d^2y}{dx^2} - x \frac{dy}{dx} + 2y = x \log x$. 2. [10]

Solve the differential equation in series $(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + 2y = 0$ around x = 0. 3. [10]

Express $x^2 + x + 1$ in terms of Legendre Polynomials. 4.a)

Prove that $\frac{d}{dx}(x^n J_n(x)) = x^n J_{n-1}(x)$. b) [5+5]

Prove that $(2n+1)xP_n(x) = (n+1)P_{n+1}(x) + (n)P_{n-1}(x)$. 5.a)

Prove that $J_4(x) = \left(\frac{48}{x^3} - \frac{8}{x}\right) J_1(x) + \left(1 - \frac{24}{x^2}\right) J_0(x)$. [5+5]

6.a)Find the analytic function whose real part is e^{-x} (x sin y-y cos y).

b) Evaluate
$$\int_{C} \frac{dz}{(z-2)(z-4)}$$
 where C is $|z-3|=1/2$. [5+5]

OR

If f(z) is an analytic function then show that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4|f'(z)|^2$. 7.a)

b) Evaluate
$$\int_{C} \frac{dz}{(z^2 - 4)(z + 1)}$$
 where C is $|z| = 3$. [5+5]

Evaluate $\int_0^{2\pi} \frac{d\theta}{2 + \cos \theta}$ using residue theorem. 8. [10]

- Evaluate using residue theorem $\int_{-\infty}^{\infty} \frac{x^2 dx}{(x^2 + 1)(x^2 + 4)}$. 9. [10]
- Under the transformation $w = \frac{z i}{1 iz}$ find the image of the circle |z| = 1.
 - b) Find the image of |z-3i|=3 under the mapping $w=\frac{1}{z}$. [5+5]

- Find the image of the region bounded by the lines x = 1, y = 1, x + y = 1 under the transformation $w = z^2$. Find the bilinear mapping which maps the points $z = \infty$, i, 0 into 0, i, ∞ . [5+5]
 - .ps the ----00000---