Code No: 117MB

R13

B. Tech IV Year I Semester Examinations, March - 2017 MECHANICS OF COMPOSITE MATERIALS

(Mechanical Engineering)

		(Mechanic	ai Engineering)						
Time:	larks: 75								
Note:	This question paper con	tains two parts	A and B		-				
2.**** **	Part A is compulsory w			questions in Part	A. Part B				
	consists of 5 Units. Ar								
	carries 10 marks and ma				1				
	cultion to marks and me	iy nave a, e, e a	s sub questions.						
		Port- A	(25 Marks)						
1 (3)	Differentiate orthotropic	moterials from	vicotronic materials	**************************************	[2]				
I.a)				· San Ball	[3]				
	b) What are the main constituents of a composite material?								
-	c) Explain difference between fibers and whiskers.								
d)	Why are reinforcement				[3]				
e) Are v_{12} and v_{21} independent of each other for a unidirectional orthotropic lamina? [2]									
f.).	What are the values of								
:::::	modulus and Poisson's				[3]				
g)	Distinguish between mi	cro and macro	nechanics approach	es.	[2]				
h)	What are the assumption	ns used in class	ical lamination theo	ry?	[3]				
i)	Name the yield criteria	used for the fai	lure analysis of com	posite materials.	[2]				
j)	Explain what are cross-p	oly, symmetric	and angle-ply lamin	ate.	[3]				
X****	e in pro-	V275 gatt	21774 367	1 2 2	100				
h		2000 0000	a' ta						
Part-B (50 Marks)									
2.a)	Explain various applicat	tions of compos	sites in detail						
b)	How are composites cla			of composites wit	th their merits				
U)		ssified: Diferry	explain each type	of composites wit					
	and demerits.	120 TATE	OR	100	[5+5]				
2 -)	White the applications of	f commonite me	0.44	irarafta					
3.a)	Write the applications o				noting the use				
b)	Enumerate six primary	materiai select	ion parameters mat	are used in evan					
	of a particular material.				[5+5]				
4	T 1: 4 (0)	7.5			200				
Faul V	Explain the function of		T	Too Thuse	100 CE . 61				
b)	What are metal matrix of	composites! Ex	•	examples.	[5+5]				
			OR						
5.a)	Find three applications		_						
b)	Find three applications	of carbon matri	x composites.		[5+5]				
6.a) Write the number of independent elastic constants for three-dimensional anisotropic,									
	monoclinic, orthotropic	, transversely is	otropic, and isotrop	ic materials.					
b)	Reduce the monoclinic	stress-strain	relationships to the	se of an orthotre	opic material.				
					[5+5]				

E	şa.	2 1			
* *	4	7.4 8.8.4.9	** ***		化硫 医锥形术
4		4 4 4	1 1		1 1
7.:	····The	engineering '	constants for an	orthotropic material	are found to be

$$E_1 = 4 Msi$$
, $E_3 = 3 Msi$, $E_3 = 3.1 Msi$,

$$v_{12} = 0.2$$
, $v_{23} = 0.4$, $v_{31} = 0.6$,

$$G_{12} = 6 Msi$$
, $G_{23} = 7 Msi$, $G_{31} = 2 Msi$ $G_{12} = 6 Msi$

Find the stiffness matrix [C] and the compliance matrix [S] for the preceding orthotropic material.

- 8. Find the stiffness matrices [A] and [B] for a three ply [0/30/-45] graphite epoxy laminate. . Assume each lamina has a thickness of 5 mm. The properties of graphite/Epoxy are Assume each familia has a uncompess of 5 min. The properties of $E_1 = 181 \text{ GPa}$, $E_2 = 10.3 \text{ GPa}$, $V_{12} = 0.28 \text{ and } G_{12} = 7.17 \text{ GPa}$. :::[:10]
- A beam is made of two bonded isotropic strips as shown in the figure 1. The two strips 9. are of equal thickness. Find the stiffness matrices [A], [B], and [D].

10.a) Explain the Tsai-Hill failure criteria for composites.

b) Explain the Tsai-Wu failure criteria for composites.

[5+5]

11... Determine the maximum value of $\alpha > 0$, if stresses of $\sigma_x = 3$ α , $\sigma_y = 2 \cdot \alpha$, $\tau_{xy} = 5$ α are applied to

a 60^{0} lamina of graphite/epoxy. The material properties of this lamina are given as follows: $V_f = 0.7$, $E_1 = 181$ GPa, $E_2 = 10.30$ GPa, $v_{12} = 0.28$, $G_{12} = 7.17$ GPa, X = 1500 MPa, X = 1500 MPa, Y = 240 MPa, Y = 246 MPa and Y = 246 MPa.

Use the following failure theories

- a) Maximum Stress Theory
- "...b) Maximum Strain Theory"
 c) Hoffman Failure Theory....

--ooOoo--