

R15

Code No: 123BT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech II Year I Semester Examinations, March - 2017 PROBABILITY THEORY AND STOCHASTIC PROCESSES (Common to ECE, ETM)

Time: 3 Hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART - A

		(25 Marks)
1.a)	Define Random variable.	[2]
b)	Write about the continuous and mixed random variables.	[3]
c)	Mention the difference between the Variance and Skew.	[2]
d)	Write about the Rayleigh density and distribution function.	[3]
e)	Explain the equal and unequal distributions.	[2]
f)	Write about linear transformations of Gaussian random variables.	[3]
g)	Mention the properties covariance.	[2]
h)	Show that $S_{xx}(\omega) = S_{xx}(-\omega)$.	[3]
i)	State wiener-Khinchin relation.	[2]
j)	Express the relationship between power spectrum and autocorrelation.	[3]

PART - B

(50 Marks)

- 2.a) Discuss the mutually exclusive events with an example.
- b) Define probability, set and sample spaces.

[5+5]

OR

- 3. Write the classical and axiomatic definitions of Probability and for a three digit decimal number chosen at random, find the probability that exactly K digits are greater than and equal to 5, for 0 < K < 3. [10]
- 4.a) Obtain the relationship between probability and probability density function.
 - b) Find the moment generating function of the random variable whose moments are $m_r = (r+1)!2^r$. [5+5]

OR

- 5.a) Write about Chebychev's inequality and mention about its characteristic function.
 - b) Determine the moment generating function about origin of the Poisson distribution. [5+5]
- 6.a) Differentiate between the marginal distribution functions, conditional distribution functions and densities.
- b) Given the transformation $y = \cos x$ where x be a uniformly distributed random variable in the interval $(-\pi, \pi)$. Find $f_y(y)$ and E[y]. [5+5]

OR

- 7. Let X be a random variable defined, Find E [3X] and E[X²] given the density function as $f_x(x) = \frac{(\pi/16)\cos(\pi x/8)}{0}, \quad -4 \le x \le 4$ $0, \quad elsewhere$ [10]
- 8.a) State and prove properties of cross correlation function.
 - b) If the PSD of X(t) is $S_{xx}(\omega)$. Find the PSD of dx(t)/dt.

[5+5]

OR

- 9. A random process $Y(t) = X(t) X(t + \tau)$ is defined in terms of a process X(t). That is at least wide sense stationary.
 - a) Show that mean value of Y(t) is 0 even if X(t) has a non Zero mean value.
 - b) If $Y(t) = X(t) + X(t + \tau)$ find E[Y(t)] and σY^2 .

[5+5]

- 10. The auto correlation function of a random process X(t) is $R_{XX}(\tau) = 3+2 \exp(-4\tau^2)$.
 - a) Evaluate the power spectrum and average power of X(t).
 - b) Calculate the power in the frequency band $-1/\sqrt{2} \le \omega \le 1/\sqrt{2}$

[5+5]

OF

11. Derive the relation between PSDs of input and output random process of an LTI system.

[10]

---ooOoo---