R15

Code No: 123BJ

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD
B. Tech II Year I Semester Examinations, March - 2017

STRENGTH OF MATERIALS – I (Common to CE, CEE)

Time: 3 Hours

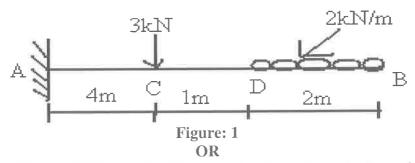
Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

ni ding		(25 Marks)
1.a)	What do you mean by principle of super position?	[2]
b)	Define different modulii.	[3]
c)	Define Bending Moment and B.M.D.	[2]
d)	Explain with neat sketches different types of beams.	[3]
. e)	Define shear stress and write the formulae for calculating this stress.	.[2]
f):	Write the assumptions in simple bending theory.	:[3]:::
g)	State "Rankine's theorem of failure".	[2]
h)	Write the limitations of maximum shear stress theory.	[3]
i)	Define moment area theorem II.	[2]
j)	What is Macaulay's method and how this is different from double int	egration
	method of calculating slopes and deflections in a beam.	[3]
1111		100


PART-B

(50 Marks)

- 2.a) Draw stress strain diagram for mild steel, brittle material and a ductile material and indicate salient points.
- A circular alloy bar 3 m long uniformly tapers from 40mm diameter to 25mm diameter. Calculate the elongation of the rod under the axial force of 75kN: Take E=140GPa. [5+5]

OR

- Define Resilience and derive the equation of stresses for a body subjected to sudden and impact loading. [10]
 - Draw S.F.D and B.M.D for the cantilever beam shown in figure 1. [10]

5. Draw S.F.D and B.M.D for the Over hanging beam shown in figure 2.

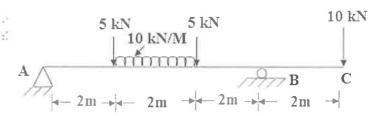


Figure: 2

A simply supported beam of span 8 m carries a udl of 15 kN/m over the entire span. If the maximum allowable stress due to bending is restricted to 175 N/mm², determine the cross sectional dimensions if the section is:

- a) Rectangular with depth twice the breadth
- b) Hollow circular section having a diameter ratio of 0.7.

[5+5]

OR

- 7.a) Prove that for a rectangular section maximum shear stress is 1.5 times of average stress.
 - b) Prove that for a Circular section maximum shear stress is 1.33 times of average stress. [5+5]

A rectangular block of material is subjected to a tensile stress of 120N/mm² on one plane and a tensile of 45 N/mm² on a plane at right angles to the former. Each of the above stresses is accompanies by a shear stress of 60N/mm². Determine the principal stresses, principal planes and the maximum shear stresses. [10]

OR

A Solid shaft is subjected to torque of 30 kN-m and bending moment of 15 kN-m. If the allowable stress is:165 Mpa, find the diameter of the shaft using:

a) Maximum stress theory

....8....

b) Maximum shear stress theory, Poisson's ratio is 0.3.

[5+5]

- Derive the formulae used to find the slope and deflection of a beam by Moment-Area method.
 - Using Moment area theorems find the values of slope and deflection for a cantilever beam of length 'L' subjected to Moment 'M' at the free end? [5+5]

OR

A cantilever of length '4a' is carrying a load of W at the free end, and another load of W at its centre. Calculate the slope and deflection of the cantilever at the free end, using conjugate beam method.

---00000---