II B.Tech I Semester Examinations,November 2010

STRENGTH OF MATERIALS - I

Civil Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. A beam with a span of 6 meters carries a point load of 40 kN at 4 meters from the left support. If, for the section $\mathrm{I}_{x x}=73.3 \times 10^{6} \mathrm{~m}^{4}$ and $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$, Using Macaulay's Method, find:
(a) The deflection under the load;
(b) The position and amount of maximum deflection.
2. A simply supported beam of length 3 m carries a point load of 12 kN at a distance of 2 m from left support. The cross-section of the beam is shown in Figure 2. Determine the maximum tensile and compressive stress at X-X.

Figure 2
3. An axial pull of 35000 N is acting on a bar consisting of three lengths as shown in Figure 3. If the Young's modulus $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine: Stresses in each section and Total extension of the bar.

Figure 3
4. Draw the S.F. and B.M. diagrams for the beam which is loaded as shown in Figure 4. Determine the points of contraflexure within the span AB .

Figure 4
5. A spherical shell of internal diameter 0.9 m and of thickness 10 mm is subjected to an internal pressure of $1.4 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the increase in diameter and increase in volume. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=1 / 3$.
[16]
6. A circular beam of 100.5 mm diameter is subjected to a shear force of 10 kN . Calculate the value of maximum shear stress, and sketch the variation of the shear stress along the depth of the beam.
7. The maximum instantaneous extension, produced by an unknown falling weight through a height of 3.5 cm in a vertical bar of length 3 m and of cross-sectional area $6 \mathrm{~cm}^{2}$, is 2.1 mm . Determine instantaneous stress induced in the vertical bar, and the value of unknown weight. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
8. (a) Differentiate between a thin cylinder and a thick cylinder.
(b) Find an expression for the radial pressure and hoop stress at any point in case of a thick cylinder.

II B.Tech I Semester Examinations,November 2010 STRENGTH OF MATERIALS - I

Civil Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Differentiate between a thin cylinder and a thick cylinder.
(b) Find an expression for the radial pressure and hoop stress at any point in case of a thick cylinder.
2. A circular beam of 100.5 mm diameter is subjected to a shear force of 10 kN . Calculate the value of maximum shear stress, and sketch the variation of the shear stress along the depth of the beam.
3. A beam with a span of 6 meters carries a point load of 40 kN at 4 meters from the left support. If, for the section $\mathrm{I}_{x x}=73.3 \times 10^{6} \mathrm{~m}^{4}$ and $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$, Using Macaulay's Method, find:
(a) The deflection under the load;
(b) The position and amount of maximum deflection.
4. A simply supported beam of length 3 m carries a point load of 12 kN at a distance of 2 m from left support. The cross-section of the beam is shown in Figure 4. Determine the maximum tensile and compressive stress at X-X.

Figure 4
5. Draw the S.F. and B.M. diagrams for the beam which is loaded as shown in Figure 5. Determine the points of contraflexure within the span AB .

Figure 5
6. An axial pull of 35000 N is acting on a bar consisting of three lengths as shown in Figure 6. If the Young's modulus $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine: Stresses in each section and Total extension of the bar.

Figure 6
7. The maximum instantaneous extension, produced by an unknown falling weight through a height of 3.5 cm in a vertical bar of length 3 m and of cross-sectional area $6 \mathrm{~cm}^{2}$, is 2.1 mm . Determine instantaneous stress induced in the vertical bar, and the value of unknown weight. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
8. A spherical shell of internal diameter 0.9 m and of thickness 10 mm is subjected to an internal pressure of $1.4 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the increase in diameter and increase in volume. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=1 / 3$.

II B.Tech I Semester Examinations,November 2010 STRENGTH OF MATERIALS - I

Civil Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. A simply supported beam of length 3 m carries a point load of 12 kN at a distance of 2 m from left support. The cross-section of the beam is shown in Figure 1. Determine the maximum tensile and compressive stress at X-X.

Figure 1
2. A beam with a span of 6 meters carries a point load of 40 kN at 4 meters from the left support. If, for the section $\mathrm{I}_{x x}=73.3 \times 10^{6} \mathrm{~m}^{4}$ and $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$, Using Macaulay's Method, find:
(a) The deflection under the load;
(b) The position and amount of maximum deflection.
[8+8]
3. Draw the S.F. and B.M. diagrams for the beam which is loaded as shown in Figure 3. Determine the points of contraflexure within the span AB.

Figure 3
4. A spherical shell of internal diameter 0.9 m and of thickness 10 mm is subjected to an internal pressure of $1.4 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the increase in diameter and increase in volume. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=1 / 3$.
5. A circular beam of 100.5 mm diameter is subjected to a shear force of 10 kN . Calculate the value of maximum shear stress, and sketch the variation of the shear stress along the depth of the beam.
6. (a) Differentiate between a thin cylinder and a thick cylinder.
(b) Find an expression for the radial pressure and hoop stress at any point in case of a thick cylinder.

$$
[6+10]
$$

7. The maximum instantaneous extension, produced by an unknown falling weight through a height of 3.5 cm in a vertical bar of length 3 m and of cross-sectional area $6 \mathrm{~cm}^{2}$, is 2.1 mm . Determine instantaneous stress induced in the vertical bar, and the value of unknown weight. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
8. An axial pull of 35000 N is acting on a bar consisting of three lengths as shown in Figure 8. If the Young's modulus $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine: Stresses in each section and Total extension of the bar.

Figure 8

II B.Tech I Semester Examinations,November 2010

1. A spherical shell of internal diameter 0.9 m and of thickness 10 mm is subjected to an internal pressure of $1.4 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the increase in diameter and increase in volume. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=1 / 3$.
2. A circular beam of 100.5 mm diameter is subjected to a shear force of 10 kN . Calculate the value of maximum shear stress, and sketch the variation of the shear stress along the depth of the beam.
3. Draw the S.F. and B.M. diagrams for the beam which is loaded as shown in Figure 3. Determine the points of contraflexure within the span $A B$.

Figure 3
4. An axial pull of 35000 N is acting on a bar consisting of three lengths as shown in Figure 4. If the Young's modulus $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$, determine: Stresses in each section and Total extension of the bar.

Figure 4
5. (a) Differentiate between a thin cylinder and a thick cylinder.
(b) Find an expression for the radial pressure and hoop stress at any point in case of a thick cylinder.
6. A beam with a span of 6 meters carries a point load of 40 kN at 4 meters from the left support. If, for the section $\mathrm{I}_{x x}=73.3 \times 10^{6} \mathrm{~m}^{4}$ and $\mathrm{E}=200 \mathrm{GN} / \mathrm{m}^{2}$, Using Macaulay's Method, find:
(a) The deflection under the load;
(b) The position and amount of maximum deflection.
7. The maximum instantaneous extension, produced by an unknown falling weight through a height of 3.5 cm in a vertical bar of length 3 m and of cross-sectional area $6 \mathrm{~cm}^{2}$, is 2.1 mm . Determine instantaneous stress induced in the vertical bar, and the value of unknown weight. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.
[16]
8. A simply supported beam of length 3 m carries a point load of $12 \sqrt{k} \mathrm{~N}$ at a distance of 2 m from left support. The cross-section of the beam is shown in Figure 8. Determine the maximum tensile and compressive stress at X-X

Figure 8

