II B.Tech I Semester Examinations,November 2010

PULSE AND DIGITAL CIRCUITS

Common to Electronics And Instrumentation Engineering, Electrical And Electronics Engineering

Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Define the following:
i. Storage time
ii. Delay time
iii. Rise time
iv. Fall time
(b) Explain how a BJT can be used as a switch. Compare its perfoemance as a switch with JFET.
[8+8]
2. (a) Describe frequency division employing a transistor astable multivibrator with waveforms.
(b) Describe frequency division employing a transistor monostable multivibrator with waveforms.
3. (a) What is pedestal Illustrate the effect of control voltage on gate output.
(b) Write the advantages and disadvantages of unidirectional diode gate.
4. (a) Draw the circuit diagram of diode-transistor logic NOR gate and explain its operation.
(b) Draw the output waveform X for the given inputs figure 3b

Figure 3b
5. Consider a self-biased nonsaturated flip-flop obtained from figure 2 by setting $\mathrm{V}_{B B}=0$ and by adding a common emitter resistor Re to ground in figure 2. The circuit has the following parameters: $\quad \mathrm{V}_{C C}=25 \mathrm{~V}, \mathrm{~V}_{Z}=4.3 \mathrm{~V}, \mathrm{~h}_{F E}=50, \mathrm{Rc}=2.2 \mathrm{~K}, \mathrm{R}_{1}=\mathrm{R}_{2}=15 \mathrm{~K}$ and $\mathrm{Re}=470 \Omega$. Neglect the voltage drop across a forward-biased junction. Verify that the transistors do not enter the saturation region. Calculate the transistor
currents and the current in each diode.

Figure 2
6. (a) Design a diode clamper to restore a d.c level of +3 Volts to an input sinusoidal signal of peak value 10 Volts. Assume drop across diode is 0.6 volts as shown in the figure 4 a .

Figure 4a
(b) Compare series diode clipper and shunt diode clipper.
7. (a) List out the applications of sweep circuits.
(b) Distinguish between voltage and current sweep circuits.
(c) Draw the circuit of a linear current sweep and explain its operation with waveforms. Explain the necessity of generating trapezoidal waveform. $\quad[4+4+8]$
8. (a) Obtain the response of RC high pass cirucit for an exponential i/p lignal
(b) A square wave whose peak-to-peak valve is 1 V , exterds $\pm 0.5 \mathrm{~V}$ w.r.t. to ground. The half period is 0.1 Sec this voltage impressed upon an RC differentating circuit whose time constant is 0.2 sec . Determine the maximum and minimum values of the o / p voltages in the steady state.

II B.Tech I Semester Examinations,November 2010

PULSE AND DIGITAL CIRCUITS

Common to Electronics And Instrumentation Engineering, Electrical And Electronics Engineering

Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Draw the circuit diagram of diode-transistor logic NOR gate and explain its operation.
(b) Draw the output waveform X for the given inputs figure

Figure 3b
2. (a) What is pedestal? Illustrate the effect of control voltage on gate output.
(b) Write the advantages and disadvantages of unidirectional diode gate.
3. (a) Describe frequency division employing a transistor astable multivibrator with waveforms.
(b) Describe frequency division employing a transistor monostable multivibrator with waveforms.
4. (a) Define the following:
i. Storage time
ii. Delay time
iii. Rise time
iv. Fall time
(b) Explain how a BJT can be used as a switch. Compare its perfoemance as a switch with JFET.
5. (a) Obtain the response of RC high pass cirucit for an exponential i / p lignal
(b) A square wave whose peak-to-peak valve is 1 V , exterds $\pm 0.5 \mathrm{~V}$ w.r.t. to ground. The half period is 0.1 Sec this voltage impressed upon an RC differentating circuit whose time constant is 0.2 sec . Determine the maximum and minimum values of the o/p voltages in the steady state.
6. Consider a self-biased nonsaturated flip-flop obtained from figure 2 by setting $\mathrm{V}_{B B}=0$ and by adding a common emitter resistor $R e$ to ground in figure 2. The circuit has the following parameters: $\mathrm{V}_{C C}=25 \mathrm{~V}, \mathrm{~V}_{Z}=4.3 \mathrm{~V}, \mathrm{~h}_{F E}=50, \mathrm{Rc}=2.2 \mathrm{~K}, \mathrm{R}_{1}=\mathrm{R}_{2}=15 \mathrm{~K}$ and $\operatorname{Re}=470 \Omega$. Neglect the voltage drop across a forward-biased junction. Verify that the transistors do not enter the saturation region. Calculate the transistor currents and the current in each diode.
[16]

Figure 2
7. (a) Design a diode clamper to restore a d.c level of +3 Volts to an input sinusoidal signal of peak value 10 Volts. Assume drop across diode is 0.6 volts as shown in the figure 4 a .

Figure 4a
(b) Compare series diode clipper and shunt diode clipper.
8. (a) List out the applications of sweep circuits.
(b) Distinguish between voltage and current sweep circuits.
(c) Draw the circuit of a linear current sweep and explain its operation with waveforms. Explain the necessity of generating trapezoidal waveform. $\quad[4+4+8]$

II B.Tech I Semester Examinations,November 2010

PULSE AND DIGITAL CIRCUITS

Common to Electronics And Instrumentation Engineering, Electrical And Electronics Engineering

Max Marks: 80
Time: 3 hours
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Obtain the response of RC high pass cirucit for an exponential i/p lignal
(b) A square wave whose peak-to-peak valve is 1 V , exterds $\pm 0.5 \mathrm{~V}$ w.r.t. to ground. The half period is 0.1 Sec this voltage impressed upon an RC differentating circuit whose time constant is 0.2 sec . Determine the maximum and minimum values of the o/p voltages in the steady state. $[8+8]$
2. (a) What is pedestal? Illustrate the effect of control voltage on gate output.
(b) Write the advantages and disadvantages of unidirectional diode gate.
3. (a) Describe frequency division employing a transistor astable multivibrator with waveforms.
(b) Describe frequency division employing a transistor monostable multivibrator with waveforms.
4. (a) Draw the circuit diagran of diode-transistor logic NOR gate and explain its operation.
(b) Draw the output waveform X for the given inputs figure 3b

Figure 3b
5. (a) Design a diode clamper to restore a d.c level of +3 Volts to an input sinusoidal signal of peak value 10Volts. Assume drop across diode is 0.6 volts as shown in the figure 4 a .

Figure 4a
(b) Compare series diode clipper and shunt diode clipper.
6. (a) List out the applications of sweep circuits.
(b) Distinguish between voltage and current sweep circuits.
(c) Draw the circuit of a linear current sweep and explain its operation with waveforms. Explain the necessity of generating trapezoidal waveform. $\quad[4+4+8]$
7. (a) Define the following:
i. Storage time
ii. Delay time
iii. Rise time
iv. Fall time
(b) Explain how a BJT can be used as a switch. Compare its perfoemance as a switch with JFET.
8. Consider a self-biased nonsaturated flip-flop obtained from figure 2 by setting $\mathrm{V}_{B B}=0$ and by adding a common emitter resistor Re to ground in figure 2. The circuit has the following parameters: $\mathrm{V}_{C C}=25 \mathrm{~V}, \mathrm{~V}_{Z}=4.3 \mathrm{~V}, \mathrm{~h}_{F E}=50, \mathrm{Rc}=2.2 \mathrm{~K}, \mathrm{R}_{1}=\mathrm{R}_{2}=15 \mathrm{~K}$ and $\operatorname{Re}=470 \Omega$. Neglect the voltage drop across a forward-biased junction. Verify that the transistors do not enter the saturation region. Calculate the transistor currents and the current in each diode.

Figure 2

II B.Tech I Semester Examinations,November 2010 PULSE AND DIGITAL CIRCUITS
Common to Electronics And Instrumentation Engineering, Electrical And Electronics Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks
$\star \star \star \star \star$

1. (a) Obtain the response of RC high pass cirucit for an exponential i/p lignal
(b) A square wave whose peak-to-peak valve is 1 V , exterds $\pm 0.5 \mathrm{~V}$ w.r.t. to ground. The half period is 0.1 Sec this voltage impressed upon an RC differentating circuit whose time constant is 0.2 sec . Determine the maximum and minimum values of the o/p voltages in the steady state. $[8+8]$
2. Consider a self-biased nonsaturated flip-flop obtained from figure 2 by setting $\mathrm{V}_{B B}=0$ and by adding a common emitter resistor Re toground in figure 2. The circuit has the following parameters: $\mathrm{V}_{C C}=25 \mathrm{~V}, \mathrm{~V}_{\mathbf{Z}}=4.3 \mathrm{~V}, \mathrm{~h}_{F E}=50, \mathrm{Rc}=2.2 \mathrm{~K}, \mathrm{R}_{1}=\mathrm{R}_{2}=15 \mathrm{~K}$ and $\operatorname{Re}=470 \Omega$. Neglect the voltage drop across a forward-biased junction. Verify that the transistors do not enter the saturation region. Calculate the transistor currents and the current in each diode.
[16]

Figure 2
3. (a) Draw the circuit diagram of diode-transistor logic NOR gate and explain its operation.
(b) Draw the output waveform X for the given inputs figure 3b

Figure 3b
4. (a) Design a diode clamper to restore a d.c level of +3 Volts to an input sinusoidal signal of peak value 10Volts. Assume drop across diode is 0.6 volts as shown in the figure 4 a .

Figure 4a
(b) Compare series diode clipper and shunt diode clipper.
5. (a) Define the following:
i. Storage time
ii. Delay time
iii. Rise time
iv. Fall time
(b) Explain how a BJT can be used as a switch. Compare its perfoemance as a switch with JFET.
6. (a) List out the applications of sweep circuits.
(b) Distinguish between voltage and current sweep circuits.
(c) Draw the circuit of a linear current sweep and explain its operation with waveforms. Explain the necessity of generating trapezoidal waveform. $\quad[4+4+8]$
7. (a) Describe frequency division employing a transistor astable multivibrator with waveforms.
(b) Describe frequency division employing a transistor monostable multivibrator with waveforms.
8. (a) What is pedestal? Illustrate the effect of control voltage on gate output.
(b) Write the advantages and disadvantages of unidirectional diode gate.

