R07

II B.Tech I Semester Examinations, November 2010 METALLURGICAL THERMODYNAMICS AND KINETICS Metallurgy And Material Technology

Time: 3 hours

Code No: 07A30602

Max Marks: 80

[5+5+6]

[7+9]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain what do you mean by thermodynamic equillibrium.
 - (b) Discuss the importance of functions of state in thermodynamics.
 - (c) Prove that $(C_P C_V) = \left[V \left(\frac{H}{P}\right)_T\right] \left(\frac{P}{T}\right)_V$.
- 2. (a) Explain about the vapour pressure of an element.
 - (b) Derive the expression $\frac{d \ln P}{d(\frac{1}{T})} = -\frac{\Delta H_s}{R}$.
- 3. (a) Draw the concentration-distance profile under steady state flow and explain?
 - (b) In a steel, during carburization at 937 0 C, 0.6% carbon is found at a depth of 0.2 mm after 1hr. Find the time required to achieve the same concentration at the same depth of carburization is done at 1047 0 C? [8+8]
- 4. (a) Draw neatly the free energy V_s temperature diagrams for both sulphides and oxide reactions?
 - (b) What are the advantages and disadvantages of Ellingham diagrams? [8+8]
- 5. (a) What is a reversible process? A reversible process should not leave any evidence to show that the process had ever occured. Explain.
 - (b) Explain the differences between reversible and irreversible processes. [8+8]
- 6. (a) According to the ionic theory, a basic slag of the following composition CaO = 48.9%, Mg = 6.7%, Mn = 1.6% FeO = 9.0%, $Fe_2O_3 = 3.3\%$, $SiO_2 = 14.4\%$ $P_2O_5 = 13.3\%$ and $Al_2O_3 = 4.1\%$ consists of Ca^{2+} , Mg^{2+} , Mn^{2+} , Fe^{2+} , Fe^{3+} , SiO_4^{-2} , PO_4^{-3} , AlO_3^{-3} and free O^{-2} ions. Calculate the ion fraction of each ion present in the slag. Molecular weights are CaO = 56.1, MgO = 40.3, MnO = 70.9, FeO = 71.8, $Fe_2O_3 = 159.7$, $SiO_2 = 60$, $P_2O_5 = 142.0$, and $Al_2O_3 = 101.9$
 - (b) Explain about the excess thermodynamic functions for the solution? [8+8]
- 7. (a) Derive the following expression: $\frac{\Delta(\frac{G}{T})}{\Delta T} = \frac{-H}{T^2}$ and explain the expression.
 - (b) Give the expression to show the temperature dependance of fugacity and explain. [10+6]
- 8. (a) Explain the common characteristics of catalysis?
 - (b) Differentiate between adsorption theory and collision theory? [8+8]

R07

II B.Tech I Semester Examinations, November 2010 METALLURGICAL THERMODYNAMICS AND KINETICS Metallurgy And Material Technology

Time: 3 hours

Code No: 07A30602

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) What is a reversible process? A reversible process should not leave any evidence to show that the process had ever occured. Explain.
 - (b) Explain the differences between reversible and irreversible processes. [8+8]
- 2. (a) According to the ionic theory, a basic slag of the following composition CaO = 48.9%, Mg = 6.7%, Mn = 1.6% $FeO = 9.0\%, Fe_2O_3 = 3.3\%, SiO_2 = 14.4\%$ $P_2O_5 = 13.3\%$ and $Al_2O_3 = 4.1\%$ consists of $Ca^{2+}, Mg^{2+}, Mn^{2+}, Fe^{2+}, Fe^{3+}, SiO_4^{-2}, PO_4^{-3}, AlO_3^{-3}$ and free O⁻² ions. Calculate the ion fraction of each ion present in the slag. Molecular weights are CaO = 56.1, MgO = 40.3, MnO = 70.9, FeO = 71.8, Fe₂O₃ = 159.7, SiO₂ = 60, P₂O₅ = 142.0, and Al₂O₃ = 101.9
 - (b) Explain about the excess thermodynamic functions for the solution? [8+8]
- 3. (a) Draw the concentration-distance profile under steady state flow and explain?
 - (b) In a steel, during carburization at 937 0 C, 0.6% carbon is found at a depth of 0.2 mm after 1hr. Find the time required to achieve the same concentration at the same depth of carburization is done at 1047 0 C? [8+8]
- 4. (a) Explain about the vapour pressure of an element.
 - (b) Derive the expression $\frac{d \ln P}{d(\frac{1}{T})} = -\frac{\Delta H_s}{R}$. [7+9]
- 5. (a) Draw neatly the free energy V_s temperature diagrams for both sulphides and oxide reactions?
 - (b) What are the advantages and disadvantages of Ellingham diagrams? [8+8]
- 6. (a) Explain what do you mean by thermodynamic equillibrium.
 - (b) Discuss the importance of functions of state in thermodynamics.
 - (c) Prove that $(C_P C_V) = \left[V \left(\frac{H}{P}\right)_T\right] \left(\frac{P}{T}\right)_V$. [5+5+6]
- 7. (a) Derive the following expression: $\frac{\Delta(\frac{G}{T})}{\Delta T} = \frac{-H}{T^2}$ and explain the expression.
 - (b) Give the expression to show the temperature dependance of fugacity and explain. [10+6]
- 8. (a) Explain the common characteristics of catalysis?
 - (b) Differentiate between adsorption theory and collision theory? [8+8]

R07

II B.Tech I Semester Examinations, November 2010 METALLURGICAL THERMODYNAMICS AND KINETICS Metallurgy And Material Technology

Time: 3 hours

Code No: 07A30602

and gy find material reenhology

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Derive the following expression: $\frac{\Delta(\frac{G}{T})}{\Delta T} = \frac{-H}{T^2}$ and explain the expression.
 - (b) Give the expression to show the temperature dependance of fugacity and explain. [10+6]
- 2. (a) Draw the concentration-distance profile under steady state flow and explain?
 - (b) In a steel, during carburization at 937 0 C, 0.6% carbon is found at a depth of 0.2 mm after 1hr. Find the time required to achieve the same concentration at the same depth of carburization is done at 1047 0 C? [8+8]
- 3. (a) Explain what do you mean by thermodynamic equilibrium.
 - (b) Discuss the importance of functions of state in thermodynamics.
 - (c) Prove that $(C_P C_V) = \left[V \left(\frac{H}{P}\right)_T\right] \left(\frac{P}{T}\right)_V.$ [5+5+6]
- 4. (a) According to the ionic theory, a basic slag of the following composition CaO = 48.9%, Mg = 6.7%, Mn = 1.6% $FeO = 9.0\%, Fe_2O_3 = 3.3\%, SiO_2 = 14.4\%$ $P_2O_5 = 13.3\%$ and $Al_2O_3 = 4.1\%$ consists of $Ca^{2+}, Mg^{2+}, Mn^{2+}, Fe^{2+}, Fe^{3+}, SiO_4^{-2}, PO_4^{-3}, AlO_3^{-3}$ and free O⁻² ions. Calculate the ion fraction of each ion present in the slag. Molecular weights are $CaO = 56.1, MgO = 40.3, MnO = 70.9, FeO = 71.8, Fe_2O_3 = 159.7, SiO_2 = 60, P_2O_5 = 142.0, and Al_2O_3 = 101.9$
 - (b) Explain about the excess thermodynamic functions for the solution? [8+8]
- 5. (a) Explain the common characteristics of catalysis?
 - (b) Differentiate between adsorption theory and collision theory? [8+8]
- 6. (a) What is a reversible process? A reversible process should not leave any evidence to show that the process had ever occured. Explain.
 - (b) Explain the differences between reversible and irreversible processes. [8+8]
- 7. (a) Draw neatly the free energy V_s temperature diagrams for both sulphides and oxide reactions?
 - (b) What are the advantages and disadvantages of Ellingham diagrams? [8+8]
- 8. (a) Explain about the vapour pressure of an element.

(b) Derive the expression
$$\frac{d\ln P}{d(\frac{1}{T})} = -\frac{\Delta H_s}{R}$$
. [7+9]

R07

II B.Tech I Semester Examinations, November 2010 METALLURGICAL THERMODYNAMICS AND KINETICS Metallurgy And Material Technology

Time: 3 hours

Code No: 07A30602

Max Marks: 80

[5+5+6]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Explain what do you mean by thermodynamic equillibrium.
 - (b) Discuss the importance of functions of state in thermodynamics.
 - (c) Prove that $(C_P C_V) = \left[V \left(\frac{H}{P}\right)_T\right] \left(\frac{P}{T}\right)_V$.
- 2. (a) Derive the following expression: $\frac{\Delta(\frac{G}{T})}{\Delta T} = \frac{-H}{T^2}$ and explain the expression.
 - (b) Give the expression to show the temperature dependance of fugacity and explain. [10+6]
- 3. (a) Draw neatly the free energy V_s temperature diagrams for both sulphides and oxide reactions?
 - (b) What are the advantages and disadvantages of Ellingham diagrams? [8+8]
- 4. (a) What is a reversible process? A reversible process should not leave any evidence to show that the process had ever occured. Explain.
 - (b) Explain the differences between reversible and irreversible processes. [8+8]
- 5. (a) Explain about the vapour pressure of an element. (b) Derive the expression $\frac{d \ln P}{d(\frac{1}{T})} = -\frac{\Delta H_s}{R}$. [7+9]
- 6. (a) According to the ionic theory, a basic slag of the following composition CaO = 48.9%, Mg = 6.7%, Mn = 1.6% FeO = 9.0%, $Fe_2O_3 = 3.3\%$, $SiO_2 = 14.4\%$ $P_2O_5 = 13.3\%$ and $Al_2O_3 = 4.1\%$ consists of Ca^{2+} , Mg^{2+} , Mn^{2+} , Fe^{2+} , Fe^{3+} , SiO_4^{-2} , PO_4^{-3} , AlO_3^{-3} and free O^{-2} ions. Calculate the ion fraction of each ion present in the slag. Molecular weights are CaO = 56.1, MgO = 40.3, MnO = 70.9, FeO = 71.8, $Fe_2O_3 = 159.7$, $SiO_2 = 60$, $P_2O_5 = 142.0$, and $Al_2O_3 = 101.9$
 - (b) Explain about the excess thermodynamic functions for the solution? [8+8]
- 7. (a) Explain the common characteristics of catalysis?
 - (b) Differentiate between adsorption theory and collision theory? [8+8]
- 8. (a) Draw the concentration-distance profile under steady state flow and explain?
 - (b) In a steel, during carburization at 937 0 C, 0.6% carbon is found at a depth of 0.2 mm after 1hr. Find the time required to achieve the same concentration at the same depth of carburization is done at 1047 0 C? [8+8]
