II B.Tech I Semester Examinations,November 2010 MOMENTUM TRANSFER Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. A lube oil(specific gravity 0.8) is flowing through a 15 cm steel pipe at 1500 LPM. A 10 cm orifice attached to a mercury manometer is placed in the pipe line and the orifice coefficient may be taken as 0.62 . If the manometer leg is inclined at an angle of 30° to the horizontal, what would be the manometer reading afong the sloping leg?
2. (a) Explain Diaphragm pump.
(b) Describe the working of reciprocating pump.

$$
[6+10]
$$

3. Show that the maximum fluid velocity attainable for flow through a pipe of uniform cross section is equal to the sonic velocity.
4. write short notes on:
(a) Velocity gradient and Rate of shear
(b) Discussion of Bernoutti's equation \& correction for effects of solid boundaries.
5. A concentrated suspension of spherical quartz particles in water settles under gravity. Particle diameter and density are 0.01 mm and $2650 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. Initial voidage in the suspension is 0.8 . Assuming the validity of Stokes law, find the initial settling velocity of the particles given that $\mathrm{U}_{S}=\mathrm{U}_{t} \varepsilon^{4.6}$.
6. Check the dimensional consistency of the following empirical equation for a heat transfer coefficient, $\mathrm{h}_{\mathrm{i}}^{0.8}=0.023 \mathrm{Gk} \mathrm{k}^{0.67} \mathrm{c}_{\mathrm{p}}^{0.33} \mathrm{D}^{-0.2} \mu^{-0.47} \mathrm{~h}_{\mathrm{i}}=$ Heat transfer coefficient, $\mathrm{G}=$ Mass velocity, $\mathrm{k}=$ Thermal conductivity, $\mathrm{c}_{\mathrm{p}}=$ Specific heat, $\mathrm{D}=$ diameter, $\mu=$ Absolute viscosity.
7. (a) Give the merits and demerits of fluidization.
(b) A spherical bead catalyst of diameter 4.4 mm is to be fluidized with water at $21{ }^{\circ} \mathrm{C}$ in a 0.1524 m diameter column. The catalyst has a density of 1600 $\mathrm{Kg} / \mathrm{m}^{3}$. The originally unexpanded column height was 0.712 m and the voidage associated with these was $\varepsilon=0.37$. Find the height of expanded bed when the solids are subjected to an upward water rate of $0.1243 \mathrm{~m} / \mathrm{s}$ and the voidage is 0.775 .
[8+8]
8. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydraulic mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular pipe.
$[5+5+6]$

II B.Tech I Semester Examinations,November 2010 MOMENTUM TRANSFER
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. write short notes on:
(a) Velocity gradient and Rate of shear
(b) Discussion of Bernoulli's equation \& correction for effects of solid boundaries. $[8+8]$
2. A concentrated suspension of spherical quartz particles in water settles under gravity. Particle diameter and density are 0.01 mm and $2650 \mathrm{~kg} / \mathrm{m}^{3}$, sespectively. Initial voidage in the suspension is 0.8 . Assuming the validity of Stokes law, find the initial settling velocity of the particles given that $\mathrm{U}_{S}=\mathrm{U}_{t} \varepsilon^{4.6}$.
3. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydrautie mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular pipe. $[5+5+6]$
4. (a) Explain Diaphragm pump.
(b) Describe the working of reciprocating pump. [6+10]
5. A lube oil(specific gravity 0.8) is flowing through a 15 cm steel pipe at 1500 LPM. A 10 cm orifice attached to a mercury manometer is placed in the pipe line and the orifice coefficient may be taken as 0.62 . If the manometer leg is inclined at an angle of 30° to the horizontal, what would be the manometer reading along the sloping leg?
6. (a) Give the merits and demerits of fluidization.
(b) A spherical bead catalyst of diameter 4.4 mm is to be fluidized with water at $21{ }^{\circ} \mathrm{C}$ in a 0.1524 m diameter column. The catalyst has a density of 1600 $\mathrm{Kg} / \mathrm{m}^{3}$. The originally unexpanded column height was 0.712 m and the voidage associated with these was $\varepsilon=0.37$. Find the height of expanded bed when the solids are subjected to an upward water rate of $0.1243 \mathrm{~m} / \mathrm{s}$ and the voidage is 0.775 .
[8+8]
7. Show that the maximum fluid velocity attainable for flow through a pipe of uniform cross section is equal to the sonic velocity.
8. Check the dimensional consistency of the following empirical equation for a heat transfer coefficient, $h_{i}^{0.8}=0.023 \mathrm{Gk}^{0.67} \mathrm{c}_{\mathrm{p}}^{0.33} \mathrm{D}^{-0.2} \mu^{-0.47} \mathrm{~h}_{\mathrm{i}}=$ Heat transfer coefficient, $\mathrm{G}=$ Mass velocity, $\mathrm{k}=$ Thermal conductivity, $\mathrm{c}_{\mathrm{p}}=$ Specific heat, $\mathrm{D}=$ diameter, $\mu=$ Absolute viscosity.

II B.Tech I Semester Examinations,November 2010 MOMENTUM TRANSFER
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Check the dimensional consistency of the following empirical equation for a heat transfer coefficient, $h_{i}^{0.8}=0.023 \mathrm{Gk}{ }^{0.67} \mathrm{c}_{\mathrm{p}}^{0.33} \mathrm{D}^{-0.2} \mu^{-0.47} \mathrm{~h}_{\mathrm{i}}=$ Heat transfer coefficient, $\mathrm{G}=$ Mass velocity, $\mathrm{k}=$ Thermal conductivity, $\mathrm{c}_{\mathrm{p}}=$ Specific heat, $\mathrm{D}=$ diameter, $\mu=$ Absolute viscosity.
2. (a) Explain Diaphragnu pump.
(b) Describe the working of reciprocating pump.
3. A lube oil(specific gravity 0.8) is flowing through a 15 cm steel pipe at 1500 LPM. A 10 cm orifice attached to a mercury manometer is placed in the pipe line and the orifice coefficient may be taken as 0.62 . If the manometer leg is inclined at an angle of 30° to the horizontal, what would be the manometer reading along the sloping leg?
4. Show that the maximum fluid velocity attainable for flow through a pipe of uniform cross section is equal to the sonic velocity.
5. write short notes on
(a) Velocity gradient and Rate of shear
(b) Discussion of Bernoulli's equation \& correction for effects of solid boundaries.
6. A concentrated suspension of spherical quartz particles in water settles under gravity. Particle diameter and density are 0.01 mm and $2650 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. Initial voidage in the suspension is 0.8 . Assuming the validity of Stokes law, find the initial settling velocity of the particles given that $\mathrm{U}_{S}=\mathrm{U}_{t} \varepsilon^{4.6}$.
7. (a) Define 'Equivalent diameter' for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydraulic mean diameter of the annular space between a 4 cm and 6 cm tubes.
(c) Draw velocity profile for laminar flow in a circular pipe.
8. (a) Give the merits and demerits of fluidization.
(b) A spherical bead catalyst of diameter 4.4 mm is to be fluidized with water at $21{ }^{\circ} \mathrm{C}$ in a 0.1524 m diameter column. The catalyst has a density of 1600 $\mathrm{Kg} / \mathrm{m}^{3}$. The originally unexpanded column height was 0.712 m and the voidage
associated with these was $\varepsilon=0.37$. Find the height of expanded bed when the solids are subjected to an upward water rate of $0.1243 \mathrm{~m} / \mathrm{s}$ and the voidage is 0.775 .

II B.Tech I Semester Examinations,November 2010 MOMENTUM TRANSFER Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. Show that the maximum fluid velocity attainable for flow through a pipe of uniform cross section is equal to the sonic velocity.
2. A lube oil(specific gravity 0.8) is flowing through a 15 cm steel pipe at 1500 LPM. A 10 cm orifice attached to a mercury manometer is placed in the pipe line and the orifice coefficient may be taken as 0.62 . If the manometer leg is incined at an angle of 30° to the horizontal, what would be the manometer reading along the sloping leg?
3. A concentrated suspension of spherical quartz particles in water settles under gravity. Particle diameter and density are 0.01 mm and $2650 \mathrm{~kg} / \mathrm{m}^{3}$, respectively. Initial voidage in the suspension is 0.8 . Assuming the validity of Stokes law, find the initial settling velocity of the particles given that $\mathrm{U}_{s}=\mathrm{U}_{t} \varepsilon^{4.6}$.
4. (a) Define 'Equivalent diameter for fluid flow through ducts of noncircular diameter.
(b) Calculate the hydraulic mean diameter of the annular space between a 4 cm and 6 em tubes.
(c) Draw velocity profile for laminar flow in a circular pipe. $[5+5+6]$
5. Check the dimensional consistency of the following empirical equation for a heat transfer coefficient, $h_{i}^{0.8}=0.023 \mathrm{Gk}^{0.67} \mathrm{c}_{\mathrm{p}}^{0.33} \mathrm{D}^{-0.2} \mu^{-0.47} \mathrm{~h}_{\mathrm{i}}=$ Heat transfer coefficient, $\mathrm{G}=$ Mass velocity, $\mathrm{k}=$ Thermal conductivity, $\mathrm{c}_{\mathrm{p}}=$ Specific heat, $\mathrm{D}=$ diameter, $\mu=$ Absolute viscosity.
6. (a) Explain Diaphragm pump.
(b) Describe the working of reciprocating pump.
7. write short notes on:
(a) Velocity gradient and Rate of shear
(b) Discussion of Bernoulli's equation \& correction for effects of solid boundaries. [8+8]
8. (a) Give the merits and demerits of fluidization.
(b) A spherical bead catalyst of diameter 4.4 mm is to be fluidized with water at $21{ }^{\circ} \mathrm{C}$ in a 0.1524 m diameter column. The catalyst has a density of 1600 $\mathrm{Kg} / \mathrm{m}^{3}$. The originally unexpanded column height was 0.712 m and the voidage
associated with these was $\varepsilon=0.37$. Find the height of expanded bed when the solids are subjected to an upward water rate of $0.1243 \mathrm{~m} / \mathrm{s}$ and the voidage is 0.775 .
