II B.Tech I Semester Examinations,November 2010 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Define law of heat summation. How it is useful in finding the heats of reaction?
(b) The heats of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{aq})$ are given as -68317, -94051 and $-40023 \mathrm{cal} / \mathrm{mol}$ respectively. Calculate the heat of formation of $\mathrm{CHCl}_{3}(\mathrm{~g})$ if the heat of combustion of $\mathrm{CHCl}_{3}(\mathrm{~g})$ is given by the following equation:
$\mathrm{CHCl}_{3}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{aq})$ $\Delta \mathrm{H}_{\mathrm{c}}=-121800 \mathrm{cal}$.

$$
[6+10]
$$

2. The flow rate of gas mixture consisting of 60% ethane, 25% hydrogen and 15% carbondioxide is found to be $200 \mathrm{~m}^{3} / \mathrm{h}$ at 300 K and 1.2 bar:
(a) Determine the composition of the gas in weight percent
(b) What is the flow rate in kg / h.
3. (a) The vapor pressure of Ethyl Ether at 273 K is 25 kpa and its latent heat of vaporization is $4.185^{*} 10^{2} \mathrm{~J} / \mathrm{kg}$. Using the Clausius - Clapeyron equation, estimate the vapor oressure at 293 K and 308 K .
(b) Write short notes on Vapour pressure plots.
4. In the chlorine manufacturing process, a dry mixture of hydrochloric acid gas and air is passed over a heated catalyst which promotes oxidation of the acid. Air is used in 40% excess of that theoretically required.
(a) Calculate the weight of air supplied per kg of acid.
(b) Calculate the composition by weight of the gas entering the reaction chamber.
(c) Assuming that 50% of the acid is oxidized in the process. Calculate the composition by weight of the gases leaving the chamber. [5+5+6]
5. Methanol vapour can be converted into formaldehyde by the following reaction mechanism:
$\mathrm{CH}_{3} \mathrm{OH}+{ }^{1} / 2 \mathrm{O}_{2} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2}$
The fresh feed to the process was $0.5 \mathrm{kmol} / \mathrm{h}$ of oxygen and an excess methanol. All of the oxygen reacts in the reactor. Formaldehyde and water are removed from the product stream first, after which hydrogen is removed from the recycled methanol. The recycle flow rate of methanol was $1 \mathrm{kmol} / \mathrm{h}$. The ratio of methanol reacting by decomposition to that by oxidation was 2.5 . Calculate the conversion per pass of methanol in the reactor. Calculate also the fresh feed rate of methanol.
6. To avoid deterioration of drugs in a container, you remove all (0.93 kg .) of the $\mathrm{H}_{2} \mathrm{O}$ from the container at $15{ }^{\circ} \mathrm{C}$ and 98.6 kPa by absorption in silica gel. The same air measures $1000 \mathrm{~m}^{3}$ at $20^{\circ} \mathrm{C}$ and 108.0 kPa when dry. What was the relative humidity of the moist air.
Antoine equation for water vapour pressure is given by $\log _{10} \mathrm{p}=7.3092-\frac{1791.30}{T-35.05}$ Where p in kpa \& T in k .
7. How many kilograms of CO_{2} are obtained by the decomposition of 100 kg of limestone containing $94.5 \% \mathrm{CaCO}_{3}, 4.2 \% \mathrm{MgCO}_{3}$, and 1.3% inert material? What is the volume of CO_{2} obtained at STP?
[16]
8. 75000 cal of heat is removed from 2 mol of hydrogen gas which is initially at $1400^{\circ} \mathrm{C}$. What is the final temperature of hydrogen?
$\mathrm{C}_{p}=6.946-0.196 \times 10^{-3} \mathrm{~T}+0.4757 \times 10^{-6} \mathrm{~T}^{2}$ Here C_{p} is in $\mathrm{Cal} /(\mathrm{mol} . \mathrm{K})$ and T is in K .

II B.Tech I Semester Examinations,November 2010 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. In the chlorine manufacturing process, a dry mixture of hydrochloric acid gas and air is passed over a heated catalyst which promotes oxidation of the acid. Air is used in 40% excess of that theoretically required.
(a) Calculate the weight of air supplied per kg of acid.
(b) Calculate the composition by weight of the gas entering the reaction chamber.
(c) Assuming that 50% of the acid is oxidized in the process. Calculate the composition by weight of the gases leaving the chamber.
$[5+5+6]$
2. How many kilograms of CO_{2} are obtained by the decomposition of 100 kg of limestone containing $94.5 \% \mathrm{CaCO}_{3}, 4.2 \% \mathrm{MgCO}_{3}$, and 1.3% inert material? What is the volume of CO_{2} obtained at S PP ?
3. (a) The vapor pressure of Ethyl Ether at 273 K is 25 kpa and its latent heat of vaporization is $4.185 * 10^{2} \mathrm{~J} / \mathrm{kg}$. Using the Clausius - Clapeyron equation, estimate the vapor oressure at 293 K and 308 K .
(b) Write short notes on Vapour pressure plots.
4. Methanol vapour can be converted into formaldehyde by the following reaction mechanism:
$\mathrm{CH}_{3} \mathrm{OH}+\nu / 2 \mathrm{O}_{2} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2}$
The fresh feed to the process was $0.5 \mathrm{kmol} / \mathrm{h}$ of oxygen and an excess methanol. All of the oxygen reacts in the reactor. Formaldehyde and water are removed from the product stream first, after which hydrogen is removed from the recycled methanol. The recycle flow rate of methanol was $1 \mathrm{kmol} / \mathrm{h}$. The ratio of methanol reacting by decomposition to that by oxidation was 2.5 . Calculate the conversion per pass of methanol in the reactor. Calculate also the fresh feed rate of methanol.
5. (a) Define law of heat summation. How it is useful in finding the heats of reaction?
(b) The heats of formation of $\mathrm{H}_{2} \mathrm{O}(1), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{aq})$ are given as -68317 , -94051 and $-40023 \mathrm{cal} / \mathrm{mol}$ respectively. Calculate the heat of formation of $\mathrm{CHCl}_{3}(\mathrm{~g})$ if the heat of combustion of $\mathrm{CHCl}_{3}(\mathrm{~g})$ is given by the following equation:
$\mathrm{CHCl}_{3}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{aq})$ $\Delta \mathrm{H}_{\mathrm{c}}=-121800 \mathrm{cal}$.
6. To avoid deterioration of drugs in a container, you remove all (0.93 kg .) of the $\mathrm{H}_{2} \mathrm{O}$ from the container at $15{ }^{\circ} \mathrm{C}$ and 98.6 kPa by absorption in silica gel. The same air measures $1000 \mathrm{~m}^{3}$ at $20^{\circ} \mathrm{C}$ and 108.0 kPa when dry. What was the relative humidity of the moist air.
Antoine equation for water vapour pressure is given by $\log _{10} \mathrm{p}=7.3092-\frac{1791.30}{T-35.05}$ Where p in kpa \& T in k .
7. The flow rate of gas mixture consisting of 60% ethane, 25% hydrogen and 15% carbondioxide is found to be $200 \mathrm{~m}^{3} / \mathrm{h}$ at 300 K and 1.2 bar:
(a) Determine the composition of the gas in weight percent
(b) What is the flow rate in kg / h.
8. 75000 cal of heat is removed from 2 mol of hydrogen gas which is initially at $1400^{\circ} \mathrm{C}$. What is the final temperature of hydrogen?
$\mathrm{C}_{p}=6.946-0.196 \times 10^{-3} \mathrm{~T}+0.4757 \times 10^{-6} \mathrm{~T}^{2}$
Here C_{p} is in $\mathrm{Cal} /(\mathrm{mol} . \mathrm{K})$ and T is in K .

II B.Tech I Semester Examinations,November 2010 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. How many kilograms of CO_{2} are obtained by the decomposition of 100 kg of limestone containing $94.5 \% \mathrm{CaCO}_{3}, 4.2 \% \mathrm{MgCO}_{3}$, and 1.3% inert material? What is the volume of CO_{2} obtained at STP?
2. (a) The vapor pressure of Ethyl Ether at 273 K is 25 kpa and its latent heat of vaporization is $4.185 * 10^{2} \mathrm{~J} / \mathrm{kg}$. Using the Clausius - Clapeyron equation, estimate the vapor oressure at 293 K and 308 K
(b) Write short notes on Vapour pressure plots
$[10+6]$
3. To avoid deterioration of drugs in a container, you remove all (0.93 kg .) of the $\mathrm{H}_{2} \mathrm{O}$ from the container at $15{ }^{\circ} \mathrm{C}$ and 98.6 KPa by absorption in silica gel. The same air measures $1000 \mathrm{~m}^{3}$ at $20^{\circ} \mathrm{C}$ and 108.0 kPa when dry. What was the relative humidity of the moist air.
Antoine equation for water yapour pressure is given by $\log _{10} \mathrm{p}=7.3092-\frac{1791.30}{T-35.05}$
Where p in $\mathrm{kpa} \& \mathrm{~T}$ in k .
4. (a) Define law of heat summation. How it is useful in finding the heats of reaction?
(b) The heats of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{aq})$ are given as -68317 , -94051 and $-40023 \mathrm{cal} / \mathrm{mol}$ respectively. Calculate the heat of formation of $\mathrm{CHCl}_{3}(\mathrm{~g})$ if the heat of combustion of $\mathrm{CHCl}_{3}(\mathrm{~g})$ is given by the following equation:
$\mathrm{CHCl}_{3}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{aq})$
$\Delta \mathrm{H}_{\mathrm{c}}=-121800 \mathrm{cal}$.
5. Methanol vapour can be converted into formaldehyde by the following reaction mechanism:
$\mathrm{CH}_{3} \mathrm{OH}+{ }^{1} / 2 \mathrm{O}_{2} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2}$
The fresh feed to the process was $0.5 \mathrm{kmol} / \mathrm{h}$ of oxygen and an excess methanol. All of the oxygen reacts in the reactor. Formaldehyde and water are removed from the product stream first, after which hydrogen is removed from the recycled methanol. The recycle flow rate of methanol was $1 \mathrm{kmol} / \mathrm{h}$. The ratio of methanol reacting by decomposition to that by oxidation was 2.5 . Calculate the conversion per pass of methanol in the reactor. Calculate also the fresh feed rate of methanol.
6. In the chlorine manufacturing process, a dry mixture of hydrochloric acid gas and air is passed over a heated catalyst which promotes oxidation of the acid. Air is used in 40% excess of that theoretically required.
(a) Calculate the weight of air supplied per kg of acid.
(b) Calculate the composition by weight of the gas entering the reaction chamber.
(c) Assuming that 50% of the acid is oxidized in the process. Calculate the composition by weight of the gases leaving the chamber.
7. 75000 cal of heat is removed from 2 mol of hydrogen gas which is initially at $1400^{\circ} \mathrm{C}$. What is the final temperature of hydrogen?
$\mathrm{C}_{p}=6.946-0.196 \times 10^{-3} \mathrm{~T}+0.4757 \times 10^{-6} \mathrm{~T}^{2}$ Here C_{p} is in $\mathrm{Cal} /(\mathrm{mol} . \mathrm{K})$ and T is in K .
8. The flow rate of gas mixture consisting of 60% ethane, 25% hydrogen and 15% carbondioxide is found to be $200 \mathrm{~m}^{3} / \mathrm{h}$ at 300 K and 1.2 bar:
(a) Determine the composition of the gas in weight percent
(b) What is the flow rate in kg / h.

II B.Tech I Semester Examinations,November 2010 CHEMICAL PROCESS CALCULATIONS
 Chemical Engineering

Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. To avoid deterioration of drugs in a container, you remove all (0.93 kg .) of the $\mathrm{H}_{2} \mathrm{O}$ from the container at $15{ }^{\circ} \mathrm{C}$ and 98.6 kPa by absorption in silica gel. The same air measures $1000 \mathrm{~m}^{3}$ at $20^{\circ} \mathrm{C}$ and 108.0 kPa when dry. What was the relative humidity of the moist air.
Antoine equation for water vapour pressure is given by $\log _{10} p=7.3092-\frac{1791.30}{T-35.05}$
Where p in kpa \& T in k .
2. (a) Define law of heat summation. How it is useful in finding the heats of reaction?
(b) The heats of formation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{HCl}(\mathrm{aq})$ are given as -68317, -94051 and $-40023 \mathrm{cal} / \mathrm{mol}$ respectively. Calculate the heat of formation of $\mathrm{CHCl}_{3}(\mathrm{~g})$ if the heat of combustion of $\mathrm{CHCl}_{3}(\mathrm{~g})$ is given by the following equation:
$\mathrm{CHCl}_{3}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})-\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{aq})$ $\Delta \mathrm{H}_{\mathrm{c}}=-121800 \mathrm{cal}$.
3. The flow rate of gas mixture consisting of 60% ethane, 25% hydrogen and 15% carbondioxide is found torbe $200 \mathrm{~m}^{3} / \mathrm{h}$ at 300 K and 1.2 bar:
(a) Determine the composition of the gas in weight percent
(b) What is the flow rate in kg / h.
4. 75000 cal of heat is removed from 2 mol of hydrogen gas which is initially at $1400^{\circ} \mathrm{C}$. What is the final temperature of hydrogen?
$\mathrm{C}_{p}=6.946-0.196 \times 10^{-3} \mathrm{~T}+0.4757 \times 10^{-6} \mathrm{~T}^{2}$
Here C_{p} is in $\mathrm{Cal} /(\mathrm{mol} . \mathrm{K})$ and T is in K .
5. (a) The vapor pressure of Ethyl Ether at 273 K is 25 kpa and its latent heat of vaporization is $4.185 * 10^{2} \mathrm{~J} / \mathrm{kg}$. Using the Clausius - Clapeyron equation, estimate the vapor oressure at 293 K and 308 K .
(b) Write short notes on Vapour pressure plots.

$$
[10+6]
$$

6. In the chlorine manufacturing process, a dry mixture of hydrochloric acid gas and air is passed over a heated catalyst which promotes oxidation of the acid. Air is used in 40% excess of that theoretically required.
(a) Calculate the weight of air supplied per kg of acid.
(b) Calculate the composition by weight of the gas entering the reaction chamber.
(c) Assuming that 50% of the acid is oxidized in the process. Calculate the composition by weight of the gases leaving the chamber. $[5+5+6]$
7. How many kilograms of CO_{2} are obtained by the decomposition of 100 kg of limestone containing $94.5 \% \mathrm{CaCO}_{3}, 4.2 \% \mathrm{MgCO}_{3}$, and 1.3% inert material? What is the volume of CO_{2} obtained at STP?
8. Methanol vapour can be converted into formaldehyde by the following reaction mechanism:
$\mathrm{CH}_{3} \mathrm{OH}+{ }^{1} / 2 \mathrm{O}_{2} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{HCHO}+\mathrm{H}_{2}$
The fresh feed to the process was $0.5 \mathrm{kmol} / \mathrm{h}$ of oxygen and an excess methanol. All of the oxygen reacts in the reactor. Formaldehyde and water are removed from the product stream first, after which hydrogen is removed from the recycled methanol. The recycle flow rate of methanol was $1 \mathrm{kmol} / \mathrm{h}$. The ratio of methanol reacting by decomposition to that by oxidation was 2.5. Calculate the conversion per pass of methanol in the reactor. Calculate also the fresh feed rate of methanol.
