II B.Tech I Semester Examinations,November 2010 FOUNDATION OF SOLID MECHANICS Aeronautical Engineering

Time: 3 hours

1. A round steel rod $\mathrm{ACB}, 1.8 \mathrm{~m}$ long, is firmly held at its ends A and B . AC is 1.2 m and 50 mm dia; BC is 0.6 m and 40 mm dia. At C , a twisting couple of moment $580 \mathrm{~N}-\mathrm{m}$ is applied. Find the moment of resisting couples at A and B and the maximum shear stresses in parts AC and BC of the rod.
2. A timber beam 175 mm wide $\times 300 \mathrm{~mm}$ deep is somply supported over a span of 5.5 m . It is loaded a with a u.d.l of $10 \mathrm{kN} / \mathrm{m}$. Calculate
(a) Shear stress developed om a layer 60 mm above neatral axis, located at 2 m from LHS.
(b) Maximum shear stress on the above section.
(c) Maximum shear stres anywhere in the beam.

$$
[5+5+6]
$$

3. Figure 3 shows a $75 \mathrm{~mm} \times 75 \mathrm{~mm}$ angle having $\mathrm{I}_{x x}=\mathrm{I}_{y y}=87.36 \times 10^{-8} \mathrm{~m}^{4}$. It is used as a freely supported bean with one leg vertical. On the application of the bending moment in the vertical plane YY the mid-section of the beam deflects in the direction AA_{1} at $33^{0} 15^{1}$ to the vertical. Calculate the second moment of area of the section about its principal axis. What is the bending stress at the corner B if the bending moment is 1.5 kNm ?

Figure 3
4. Design a double cover butt joint to withstand a load of 250 kN . The plates to be joined are 20 cm wide and 1.25 cm thick; 2 cm diameter rivets are to be used in diamond fashion of rivets rows so as to increase the efficiency of the joint. Permissible stresses are; shear $70 \mathrm{MN} / \mathrm{m}^{2}$ bearing $190 \mathrm{MN} / \mathrm{m}^{2}$ and tension $110 \mathrm{MN} / \mathrm{m}^{2}$. What is the efficiency of the joint?
5. Determine the slope and deflection at the free end of a cantilever of length 4 m , which is carrying a uniformly distributed load of $12 \mathrm{kN} / \mathrm{m}$ over a length of 3 m from the fixed end. Take EI $=2 \times 10^{13} \mathrm{~N} . \mathrm{mm}^{2}$.
6. A beam ABCD, 20 m long, is loaded as shown in Figure 6. The beam is supported at B and C and has an overhang of 2 m to the left of the support B and an overhang of K metres to the right of support C which is in the right hand half of the beam. Determine the value of K if the mid-pint of the beam is the point of inflexion and for this arrangement, plot S.F. and B.M. diagrams indicating the principal numerical values.
[16]

7. A beam 500 mm deep of a symmetrical section has $\mathrm{I}=1 \times 10^{8} \mathrm{~mm}^{4}$ and is simply supported over a span of 10 metres. Calculate
(a) The uniformly distributed load it may carry if the maximum bending stress is not to exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
(b) The maximum bending stress if the beam carries a central point load of 25 kN.
8. A boiler is subjected to an internal steam pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$. The thickness of boiler plate is 2.6 cm and permissible tensile stress is $120 \mathrm{~N} / \mathrm{mm}^{2}$. Find out the maximum diameter, when efficiency of longitudinal joint is 90% and that of circumferential joint is 40%.

II B.Tech I Semester Examinations,November 2010 FOUNDATION OF SOLID MECHANICS Aeronautical Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Design a double cover butt joint to withstand a load of 250 kN . The plates to be joined are 20 cm wide and 1.25 cm thick; 2 cm diameter rivets are to be used in diamond fashion of rivets rows so as to increase the efficiency of the jomt. Permissible stresses are; shear $70 \mathrm{MN} / \mathrm{m}^{2}$ bearing $190 \mathrm{MN} / \mathrm{m}^{2}$ and tension $110 \mathrm{MN} / \mathrm{m}^{2}$. What is the efficiency of the joint?
[16]
2. A round steel rod ACB, 1.8 m long, is firmly held at, its ends A and B. AC is 1.2 m and 50 mm dia; BC is 0.6 m and 40 mm dia. At C, a twisting couple of moment $580 \mathrm{~N}-\mathrm{m}$ is applied. Find the moment of resisting couples at A and B and the maximum shear stresses in parts AC and BC of the rod.
3. Figure 3 shows a $75 \mathrm{~mm} \times 75 \mathrm{~mm}$ angle having $\mathrm{f}_{x x}=\mathrm{I}_{y y}=87.36 \times 10^{-8} \mathrm{~m}^{4}$. It is used as a freely supported beam with one leg vertical. On the application of the bending moment in the vertical plane YY the mid-section of the beam deflects in the direction AA_{1} at $33^{0} 15^{Y}$ to the vertical. Calculate the second moment of area of the section about its principal axis. What is the bending stress at the corner B if the bending moment is 1.5 kNm ?

Figure 3
4. A beam ABCD, 20 m long, is loaded as shown in Figure 4. The beam is supported at B and C and has an overhang of 2 m to the left of the support B and an overhang of K metres to the right of support C which is in the right hand half of the beam. Determine the value of K if the mid-pint of the beam is the point of inflexion and for this arrangement, plot S.F. and B.M. diagrams indicating the principal numerical values.

Figure 4
5. A boiler is subjected to an internal steam pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$. The thickness of boiler plate is 2.6 cm and permissible tensile stress is $120 \mathrm{~N} / \mathrm{mm}^{2}$. Find out the maximum diameter, when efficiency of longitudinal joint is 90% and that of circumferential joint is 40%.
6. A timber beam 175 mm wide $\times 300 \mathrm{~mm}$ deep is somply supported over a span of 5.5 m . It is loaded a with a u.d.l of $10 \mathrm{kN} / \mathrm{m}$. Calculate:
(a) Shear stress developed om a layer 60 mm above neatral axis, located at 2 m from LHS.
(b) Maximum shear stress on the above section.
(c) Maximum shear stres anywhere in the beam.

$$
[5+5+6]
$$

7. A beam 500 mm deep of a symmetrical section has $I=1 \times 10^{8} \mathrm{~mm}^{4}$ and is simply supported over a span of 10 metres. Calculate
(a) The uniformly distributed load it may carry if the maximum bending stress is not to exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
(b) The maximum bending stress if the beam carries a central point load of 25 kN .
8. Determine the slope and deflection at the free end of a cantilever of length 4 m , which is carrying a uniformly distributed load of $12 \mathrm{kN} / \mathrm{m}$ over a length of 3 m from the fixed end. Take EI $=2 \times 10^{13} \mathrm{~N} . \mathrm{mm}^{2}$.

II B.Tech I Semester Examinations,November 2010 FOUNDATION OF SOLID MECHANICS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. A beam ABCD, 20 m long, is loaded as shown in Figure 1. The beam is supported at B and C and has an overhang of 2 m to the left of the support B and an overhang of K metres to the right of support C which is in the right hand half of the beam. Determine the value of K if the mid-pint of the beam is the point of m flexion and for this arrangement, plot S.F. and B.M. diagrams indicating the principal numerical values.

Figure 1
2. Determine the slope and deflection at the free end of a cantilever of length 4 m , which is earrying a uniformly distributed load of $12 \mathrm{kN} / \mathrm{m}$ over a length of 3 m from the fixed end. Take EI $=2 \times 10^{13} \mathrm{~N} . \mathrm{mm}^{2}$.
3. Design a double cover butt joint to withstand a load of 250 kN . The plates to be joined are 20 cm wide and 1.25 cm thick; 2 cm diameter rivets are to be used in diamond fashion of rivets rows so as to increase the efficiency of the joint. Permissible stresses are; shear $70 \mathrm{MN} / \mathrm{m}^{2}$ bearing $190 \mathrm{MN} / \mathrm{m}^{2}$ and tension $110 \mathrm{MN} / \mathrm{m}^{2}$. What is the efficiency of the joint?
4. A beam 500 mm deep of a symmetrical section has $\mathrm{I}=1 \times 10^{8} \mathrm{~mm}^{4}$ and is simply supported over a span of 10 metres. Calculate
(a) The uniformly distributed load it may carry if the maximum bending stress is not to exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
(b) The maximum bending stress if the beam carries a central point load of 25 kN .
5. A timber beam 175 mm wide $\times 300 \mathrm{~mm}$ deep is somply supported over a span of 5.5 m . It is loaded a with a u.d.l of $10 \mathrm{kN} / \mathrm{m}$. Calculate:
(a) Shear stress developed om a layer 60 mm above neatral axis, located at 2 m from LHS.
(b) Maximum shear stress on the above section.
(c) Maximum shear stres anywhere in the beam.

$$
[5+5+6]
$$

6. A round steel rod ACB, 1.8 m long, is firmly held at its ends A and B. AC is 1.2 m and 50 mm dia; BC is 0.6 m and 40 mm dia. At C, a twisting couple of moment $580 \mathrm{~N}-\mathrm{m}$ is applied. Find the moment of resisting couples at A and B and the maximum shear stresses in parts AC and BC of the rod.
[16]
7. A boiler is subjected to an internal steam pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$. The thickness of boiler plate is 2.6 cm and permissible tensile stress is $120 \mathrm{~N} / \mathrm{mm}^{2}$. Find out the maximum diameter, when efficiency of longitudinal joint is 90% and that of circumferential joint is 40%.
8. Figure 8 shows a $75 \mathrm{~mm} \times 75 \mathrm{~mm}$ angle having $\mathrm{I}_{x x}=\mathrm{I}_{y y}=87.36 \times 10^{-8} \mathrm{~m}^{4}$. It is used as a freely supported beam with one leg vertical. On the application of the bending moment in the vertical plane YY the mid-section of the beam deflects in the direction AA_{1} at $33^{0} 15^{1}$ to the vertical. Caleulate the second moment of area of the section about its principal axis. What is the bending stress at the corner B if the bending moment is 1.5 kNm ?

Figure 8

II B.Tech I Semester Examinations,November 2010 FOUNDATION OF SOLID MECHANICS
 Aeronautical Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. A beam $\mathrm{ABCD}, 20 \mathrm{~m}$ long, is loaded as shown in Figure 1. The beam is supported at B and C and has an overhang of 2 m to the left of the support B and an overhang of K metres to the right of support C which is in the right hand half of the beam. Determine the value of K if the mid-pint of the beam is the point of m flexion and for this arrangement, plot S.F. and B.M. diagrams indicating the principal numerical values.

Figure 1
2. Determine the slope and deflection at the free end of a cantilever of length 4 m , which is carrying a uniformly distributed load of $12 \mathrm{kN} / \mathrm{m}$ over a length of 3 m from the fixed end. Take EI $=2 \times 10^{13} \mathrm{~N} . \mathrm{mm}^{2}$.
3. A round steel rod ACB, 1.8 m long, is firmly held at its ends A and B . AC is 1.2 m and 50 mm dia; BC is 0.6 m and 40 mm dia. At C , a twisting couple of moment $580 \mathrm{~N}-\mathrm{m}$ is applied. Find the moment of resisting couples at A and B and the maximum shear stresses in parts AC and BC of the rod.
[16]
4. Design a double cover butt joint to withstand a load of 250 kN . The plates to be joined are 20 cm wide and 1.25 cm thick; 2 cm diameter rivets are to be used in diamond fashion of rivets rows so as to increase the efficiency of the joint. Permissible stresses are; shear $70 \mathrm{MN} / \mathrm{m}^{2}$ bearing $190 \mathrm{MN} / \mathrm{m}^{2}$ and tension $110 \mathrm{MN} / \mathrm{m}^{2}$. What is the efficiency of the joint?
[16]
5. Figure 5 shows a $75 \mathrm{~mm} \times 75 \mathrm{~mm}$ angle having $\mathrm{I}_{x x}=\mathrm{I}_{y y}=87.36 \times 10^{-8} \mathrm{~m}^{4}$. It is used as a freely supported beam with one leg vertical. On the application of the bending moment in the vertical plane YY the mid-section of the beam deflects in the direction AA_{1} at $33^{0} 15^{1}$ to the vertical. Calculate the second moment of area of the section about its principal axis. What is the bending stress at the corner B if the bending moment is 1.5 kNm ?

Figure 5
6. A boiler is subjected to an internal steam pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$. The thickness of boiler plate is 2.6 cm and permissible tensile stress is $120 \mathrm{~N} / \mathrm{mm}^{2}$. Find out the maximum diameter, when efficiency of longitudinal jqint is 90% and that of circumferential joint is 40%.
7. A timber beam 175 mm wide $\times 300 \mathrm{~mm}$ deep is somply supported over a span of 5.5 m . It is loaded a with a u.d. of $10 \mathrm{kN} / \mathrm{m}$. Calculate:
(a) Shear stress developed om a layer 60 mm above neatral axis, located at 2 m from LHS.
(b) Maximum shear stress on the above section.
(c) Maximum shear stres anywhere in the beam.
8. A beam 500 mm deep of a symmetrical section has $\mathrm{I}=1 \times 10^{8} \mathrm{~mm}^{4}$ and is simply supported over a span of 10 metres. Calculate
(a) The uniformly distributed load it may carry if the maximum bending stress is not to exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
(b) The maximum bending stress if the beam carries a central point load of 25 kN.

