Time: 3 hours

R07

Set No. 2

II B.Tech I Semester Examinations, November 2010 FOUNDATION OF SOLID MECHANICS Aeronautical Engineering

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- A round steel rod ACB, 1.8 m long, is firmly held at its ends A and B. AC is 1.2 m and 50 mm dia; BC is 0.6 m and 40 mm dia. At C, a twisting couple of moment 580 N-m is applied. Find the moment of resisting couples at A and B and the maximum shear stresses in parts AC and BC of the rod. [16]
- 2. A timber beam 175mm wide \times 300mm deep is somply supported over a span of 5.5m. It is loaded a with a u.d.l of 10 kN/m. Calculate:
 - (a) Shear stress developed om a layer 60mm above neatral axis, located at 2m from LHS.
 - (b) Maximum shear stress on the above section.
 - (c) Maximum shear stress anywhere in the beam. [5+5+6]
- 3. Figure 3 shows a 75 mm × 75 mm angle having $I_{xx} = I_{yy} = 87.36 \times 10^{-8} \text{ m}^4$. It is used as a freely supported beam with one leg vertical. On the application of the bending moment in the vertical plane YY the mid-section of the beam deflects in the direction AA₁ at 33⁰ 15¹ to the vertical. Calculate the second moment of area of the section about its principal axis. What is the bending stress at the corner B if the bending moment is 1.5 kNm? [16]

Figure 3

4. Design a double cover butt joint to withstand a load of 250 kN. The plates to be joined are 20 cm wide and 1.25 cm thick; 2 cm diameter rivets are to be used in diamond fashion of rivets rows so as to increase the efficiency of the joint. Permissible stresses are; shear 70 MN/m² bearing 190 MN/m² and tension 110 MN/m². What is the efficiency of the joint? [16]

R07

Set No. 2

- 5. Determine the slope and deflection at the free end of a cantilever of length 4 m, which is carrying a uniformly distributed load of 12 kN/m over a length of 3 m from the fixed end. Take $EI = 2 \times 10^{13} \text{ N.mm}^2$. [16]
- 6. A beam ABCD, 20 m long, is loaded as shown in Figure 6. The beam is supported at B and C and has an overhang of 2 m to the left of the support B and an overhang of K metres to the right of support C which is in the right hand half of the beam. Determine the value of K if the mid-pint of the beam is the point of inflexion and for this arrangement, plot S.F. and B.M. diagrams indicating the principal numerical values.
 [16]

- 7. A beam 500 mm deep of a symmetrical section has $I = 1 \times 10^8 \text{ mm}^4$ and is simply supported over a span of 10 metres. Calculate
 - (a) The uniformly distributed load it may carry if the maximum bending stress is not to exceed 150 N/mm^2 .
 - (b) The maximum bending stress if the beam carries a central point load of 25 kN. [16]
- 8. A boiler is subjected to an internal steam pressure of 2 N/mm². The thickness of boiler plate is 2.6cm and permissible tensile stress is 120 N/mm². Find out the maximum diameter, when efficiency of longitudinal joint is 90% and that of circumferential joint is 40%.
 [16]

Time: 3 hours

R07

Set No. 4

II B.Tech I Semester Examinations, November 2010 FOUNDATION OF SOLID MECHANICS Aeronautical Engineering

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- Design a double cover butt joint to withstand a load of 250 kN. The plates to be joined are 20 cm wide and 1.25 cm thick; 2 cm diameter rivets are to be used in diamond fashion of rivets rows so as to increase the efficiency of the joint. Permissible stresses are; shear 70 MN/m² bearing 190 MN/m² and tension 110 MN/m². What is the efficiency of the joint? [16]
- 2. A round steel rod ACB, 1.8 m long, is firmly held at its ends A and B. AC is 1.2 m and 50 mm dia; BC is 0.6 m and 40 mm dia. At C, a twisting couple of moment 580 N-m is applied. Find the moment of resisting couples at A and B and the maximum shear stresses in parts AC and BC of the rod. [16]
- 3. Figure 3 shows a 75 mm × 75 mm angle having $I_{xx} = I_{yy} = 87.36 \times 10^{-8} \text{ m}^4$. It is used as a freely supported beam with one leg vertical. On the application of the bending moment in the vertical plane YY the mid-section of the beam deflects in the direction AA₁ at 33^o 15¹ to the vertical. Calculate the second moment of area of the section about its principal axis. What is the bending stress at the corner B if the bending moment is 1.5 kNm? [16]

Figure 3

4. A beam ABCD, 20 m long, is loaded as shown in Figure 4. The beam is supported at B and C and has an overhang of 2 m to the left of the support B and an overhang of K metres to the right of support C which is in the right hand half of the beam. Determine the value of K if the mid-pint of the beam is the point of inflexion and for this arrangement, plot S.F. and B.M. diagrams indicating the principal numerical values. [16]

Set No. 4

- 5. A boiler is subjected to an internal steam pressure of 2 N/mm². The thickness of boiler plate is 2.6cm and permissible tensile stress is 120 N/mm². Find out the maximum diameter, when efficiency of longitudinal joint is 90% and that of circumferential joint is 40%. [16]
- 6. A timber beam 175mm wide \times 300mm deep is somply supported over a span of 5.5m. It is loaded a with a u.d.l of 10 kN/m. Calculate:
 - (a) Shear stress developed om a layer 60mm above neatral axis, located at 2m from LHS.
 - (b) Maximum shear stress on the above section.
 - (c) Maximum shear stres anywhere in the beam. [5+5+6]
- 7. A beam 500 mm deep of a symmetrical section has $I = 1 \times 10^8 \text{ mm}^4$ and is simply supported over a span of 10 metres. Calculate
 - (a) The uniformly distributed load it may carry if the maximum bending stress is not to exceed 150 $\rm N/mm^2.$
 - (b) The maximum bending stress if the beam carries a central point load of 25 kN. [16]
- 8. Determine the slope and deflection at the free end of a cantilever of length 4 m, which is carrying a uniformly distributed load of 12 kN/m over a length of 3 m from the fixed end. Take $EI = 2 \times 10^{13} \text{ N.mm}^2$. [16]

R07

Set No. 1

II B.Tech I Semester Examinations, November 2010 FOUNDATION OF SOLID MECHANICS Aeronautical Engineering

Time: 3 hours

Code No: 07A32101

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1. A beam ABCD, 20 m long, is loaded as shown in Figure 1. The beam is supported at B and C and has an overhang of 2 m to the left of the support B and an overhang of K metres to the right of support C which is in the right hand half of the beam. Determine the value of K if the mid-pint of the beam is the point of inflexion and for this arrangement, plot S.F. and B.M. diagrams indicating the principal numerical values. [16]

- 2. Determine the slope and deflection at the free end of a cantilever of length 4 m, which is carrying a uniformly distributed load of 12 kN/m over a length of 3 m from the fixed end. Take $EI = 2 \times 10^{13} \text{ N.mm}^2$. 16
- 3. Design a double cover butt joint to withstand a load of 250 kN. The plates to be joined are 20 cm wide and 1.25 cm thick; 2 cm diameter rivets are to be used in diamond fashion of rivets rows so as to increase the efficiency of the joint. Permissible stresses are; shear 70 MN/m 2 bearing 190 MN/m 2 and tension 110 MN/m 2 . What is the efficiency of the joint? [16]
- 4. A beam 500 mm deep of a symmetrical section has $I = 1 \times 10^8 \text{ mm}^4$ and is simply supported over a span of 10 metres. Calculate
 - (a) The uniformly distributed load it may carry if the maximum bending stress is not to exceed 150 N/mm^2 .
 - (b) The maximum bending stress if the beam carries a central point load of 25 kN. [16]
- 5. A timber beam 175mm wide \times 300mm deep is somply supported over a span of 5.5m. It is loaded a with a u.d.l of 10 kN/m. Calculate:
 - (a) Shear stress developed om a layer 60mm above neatral axis, located at 2m from LHS.

R07

Set No. 1

- (b) Maximum shear stress on the above section.
- (c) Maximum shear stres anywhere in the beam. [5+5+6]
- 6. A round steel rod ACB, 1.8 m long, is firmly held at its ends A and B. AC is 1.2 m and 50 mm dia; BC is 0.6 m and 40 mm dia. At C, a twisting couple of moment 580 N-m is applied. Find the moment of resisting couples at A and B and the maximum shear stresses in parts AC and BC of the rod. [16]
- 7. A boiler is subjected to an internal steam pressure of 2 N/mm². The thickness of boiler plate is 2.6cm and permissible tensile stress is 120 N/mm². Find out the maximum diameter, when efficiency of longitudinal joint is 90% and that of circumferential joint is 40%.
 [16]
- 8. Figure 8 shows a 75 mm \times 75 mm angle having $I_{xx} = I_{yy} = 87.36 \times 10^{-8} \text{ m}^4$. It is used as a freely supported beam with one leg vertical. On the application of the bending moment in the vertical plane YY the mid-section of the beam deflects in the direction AA₁ at 33⁰ 15¹ to the vertical. Calculate the second moment of area of the section about its principal axis. What is the bending stress at the corner B if the bending moment is 1.5 kNm? [16]

R07

Set No. 3

II B.Tech I Semester Examinations, November 2010 FOUNDATION OF SOLID MECHANICS Aeronautical Engineering

Time: 3 hours

Code No: 07A32101

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1. A beam ABCD, 20 m long, is loaded as shown in Figure 1. The beam is supported at B and C and has an overhang of 2 m to the left of the support B and an overhang of K metres to the right of support C which is in the right hand half of the beam. Determine the value of K if the mid-pint of the beam is the point of inflexion and for this arrangement, plot S.F. and B.M. diagrams indicating the principal numerical values. [16]

- 2. Determine the slope and deflection at the free end of a cantilever of length 4 m, which is carrying a uniformly distributed load of 12 kN/m over a length of 3 m from the fixed end. Take $EI = 2 \times 10^{13} \text{ N.mm}^2$. [16]
- 3. A round steel rod ACB, 1.8 m long, is firmly held at its ends A and B. AC is 1.2 m and 50 mm dia; BC is 0.6 m and 40 mm dia. At C, a twisting couple of moment 580 N-m is applied. Find the moment of resisting couples at A and B and the maximum shear stresses in parts AC and BC of the rod. [16]
- 4. Design a double cover butt joint to withstand a load of 250 kN. The plates to be joined are 20 cm wide and 1.25 cm thick; 2 cm diameter rivets are to be used in diamond fashion of rivets rows so as to increase the efficiency of the joint. Permissible stresses are; shear 70 MN/m² bearing 190 MN/m² and tension 110 MN/m². What is the efficiency of the joint? [16]
- 5. Figure 5 shows a 75 mm \times 75 mm angle having $I_{xx} = I_{yy} = 87.36 \times 10^{-8} \text{ m}^4$. It is used as a freely supported beam with one leg vertical. On the application of the bending moment in the vertical plane YY the mid-section of the beam deflects in the direction AA_1 at 33^0 15¹ to the vertical. Calculate the second moment of area of the section about its principal axis. What is the bending stress at the corner B if the bending moment is 1.5 kNm? [16]

- 6. A boiler is subjected to an internal steam pressure of 2 N/mm². The thickness of boiler plate is 2.6cm and permissible tensile stress is 120 N/mm². Find out the maximum diameter, when efficiency of longitudinal joint is 90% and that of circumferential joint is 40%.
 [16]
- 7. A timber beam 175mm wide \times 300mm deep is somply supported over a span of 5.5m. It is loaded a with a u.d.l of 10 kN/m. Calculate:
 - (a) Shear stress developed om a layer 60mm above neatral axis, located at 2m from LHS.
 - (b) Maximum shear stress on the above section.
 - (c) Maximum shear stress anywhere in the beam. [5+5+6]
- 8. A beam 500 mm deep of a symmetrical section has $I = 1 \times 10^8 \text{ mm}^4$ and is simply supported over a span of 10 metres. Calculate
 - (a) The uniformly distributed load it may carry if the maximum bending stress is not to exceed 150 N/mm².
 - (b) The maximum bending stress if the beam carries a central point load of 25 kN. [16]
