II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 MATHEMATICS - II
 Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the Z - transform of $2^{2 n+1}$
(b) Find $z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
2. Verify Caylay - Hamilton theorem and find the inverse of the matrix $\left[\begin{array}{ccc}1 & 0 & -3 \\ 2 & 1 & -1\end{array}\right]$
3. (a) Form the partial differential equation by eliminating the arbitrary functions from $\mathrm{Z}=\mathrm{f}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}, x^{2}+y^{2}+z^{2}\right)$
(b) Form the partial differential equation by eliminating the arbitrary functions from $\mathrm{xy}+\mathrm{yz}+\mathrm{zx}=f\left(\frac{z}{x+y}\right) \quad[8+8]$
4. A square plate is bounded by the lines $x=0, y=0, x=20$ and $y=20$. Its faces are insulated. The temparature along upper horizontal edge is given by $a(x, 20)=$ $x(20-x)$ when $0<x<20$. While the other three edges are kept at $0^{\circ} C$. Find the steady state temparature in the plate.
5. (a) Expand the function $\mathrm{f}(\mathrm{x})=-\mathrm{x}$ if $-4 \leq x \leq 0$

$$
=\mathrm{x} \text { if } 0 \leq x \leq 4 \text { a Fourier series }
$$

(b) If $\mathrm{f}(\mathrm{x})=\pi \mathrm{x}, 0<x<1$

$$
=\pi(2-\mathrm{x}), 1<x<2 .
$$

Find Fourier series in (0, 2)
6. (a) Show that the matrix $\left[\begin{array}{ccc}3 & 7-4 i & -2+5 i \\ 7+4 i & -2 & 3+i \\ -2-5 i & 3-i & 4\end{array}\right]$ is a Hermitian matrix.
(b) If $A=\left[\begin{array}{cc}0 & 1+2 i \\ -1+2 i & 0\end{array}\right]$ Show that $(I-A)(I+A)^{-1}$ is a Unitary matrix.

$$
[8+8]
$$

7. (a) Find the rank of the matrix by reducing it to the normal form $\left[\begin{array}{cccc}2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6\end{array}\right]$
(b) Find the rank of the matrix by reducing it to the Echelon form $\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$
8. (a) Find the Fourier Cosine transform of $e^{-x^{2}}$ is reciprocal.
(b) Find the Fourier sine transform of $\frac{1}{x}$

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II
Common to CE, CHEM, AE, BT, MMT
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find the Fourier Cosine transform of $e^{-x^{2}}$ is reciprocal.
(b) Find the Fourier sine transform of $\frac{1}{x}$
2. A square plate is bounded by the lines $x=0, y=0, x=20$ and $y=20$. Its faces are insulated. The temparature along uppar horizontal edge is given by $a(x, 20)=$ $\mathrm{x}(20-\mathrm{x})$ when $0<x<20$. While the other three edges are kept at $0^{\circ} \mathrm{C}$. Find the steady state temparature in the plate.
3. (a) Show that the matrix $\left[\begin{array}{ccc}3 & 7-4 i & -2+5 i \\ 7+4 i & -2 & 3+i \\ -2-5 i & 3-i & 4\end{array}\right]$ is a Hermitian matrix.
(b) If $\mathrm{A}=\left[\begin{array}{cc}0 & 1+2 i \\ -1+2 i & 0\end{array}\right]$ Show that $(\mathrm{I}-\mathrm{A})(\mathrm{I}+\mathrm{A})^{-1}$ is a Unitary matrix. [8+8]
4. (a) Find the rank of the matrix by reducing it to the normal form $\left[\begin{array}{cccc}2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6\end{array}\right]$
(b) Find the rank of the matrix by reducing it to the Echelon form $\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$ [8+8]
5. (a) Expand the function $\mathrm{f}(\mathrm{x})=-\mathrm{x}$ if $-4 \leq x \leq 0$

$$
=\mathrm{x} \text { if } 0 \leq x \leq 4 \text { a Fourier series }
$$

(b) If $\mathrm{f}(\mathrm{x})=\pi \mathrm{x}, 0<x<1$

$$
=\pi(2-\mathrm{x}), 1<x<2
$$

Find Fourier series in $(0,2)$
6. (a) Form the partial differential equation by eliminating the arbitrary functions from

$$
\mathrm{Z}=\mathrm{f}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}, x^{2}+y^{2}+z^{2}\right)
$$

(b) Form the partial differential equation by eliminating the arbitrary functions from $x y+y z+z x=f\left(\frac{z}{x+y}\right)$
7. (a) Find the Z - transform of $2^{2 n+1}$
(b) Find $z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
8. Verify Caylay - Hamilton theorem and find the inverse of the matrix $\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II
Common to CE, CHEM, AE, BT, MMT
Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Verify Caylay - Hamilton theorem and find the inverse of the matrix $\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$ [16]
2. (a) Find the Z - transform of $2^{2 n+1}$
(b) Find $z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
3. A square plate is bounded by the lines $x=0, y=0, x=20$ and $y=20$. Its faces are insulated. The temparature along uppar horizontal edge is given by $a(x, 20)=$ $\mathrm{x}(20-\mathrm{x})$ when $0<x<20$. While the other three edges are kept at $0^{\circ} \mathrm{C}$. Find the steady state temparature in the plate.
4. (a) Form the partial differential equation by eliminating the arbitrary functions from
$\mathrm{Z}=\mathrm{f}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}, x^{2}+y^{2}+z^{2}\right)$
(b) Form the partiat differential equation by eliminating the arbitrary functions fronn $\mathrm{xy}+\mathrm{yz}+\mathrm{zx}=\mathrm{f}\left(\frac{z}{x+y}\right)$
5. (a) Find the rank of the matrix by reducing it to the normal form $\left[\begin{array}{cccc}2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6\end{array}\right]$
(b) Find the rank of the matrix by reducing it to the Echelon form $\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$
6. (a) Find the Fourier Cosine transform of $e^{-x^{2}}$ is reciprocal.
(b) Find the Fourier sine transform of $\frac{1}{x}$
7. (a) Show that the matrix $\left[\begin{array}{ccc}3 & 7-4 i & -2+5 i \\ 7+4 i & -2 & 3+i \\ -2-5 i & 3-i & 4\end{array}\right]$ is a Hermitian matrix.
(b) If $A=\left[\begin{array}{cc}0 & 1+2 i \\ -1+2 i & 0\end{array}\right]$ Show that $(I-A)(I+A)^{-1}$ is a Unitary matrix.

$$
[8+8]
$$

8. (a) Expand the function $\mathrm{f}(\mathrm{x})=-\mathrm{x}$ if $-4 \leq x \leq 0$

$$
=\mathrm{x} \text { if } 0 \leq x \leq 4 \text { a Fourier series }
$$

(b) If $\mathrm{f}(\mathrm{x})=\pi \mathrm{x}, 0<x<1$

$$
=\pi(2-\mathrm{x}), 1<x<2
$$

Find Fourier series in $(0,2)$

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 MATHEMATICS - II
 Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Show that the matrix $\left[\begin{array}{ccc}3 & 7-4 i & -2+5 i \\ 7+4 i & -2 & 3+i \\ -2-5 i & 3-i & 4\end{array}\right]$ is a Hermitian matrix.
(b) If $A=\left[\begin{array}{cc}0 & 1+2 i \\ -1+2 i & 0\end{array}\right]$ Show that $(I-A)(I+A)^{-1}$ is a Unitary matrix.

$$
[8+8]
$$

2. Verify Caylay - Hamilton theorem and find the inverse of the matrix $\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$
3. (a) Find the rank of the matrix by reducing it to the normal form $\left|\begin{array}{cccc}2 & -3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5\end{array}\right|$
(b) Find the rank of the matrix by reducing it to the Echelon form $\left[\begin{array}{cccc}8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4\end{array}\right]$
4. (a) Find the Fourier Cosine transform of $e^{-x^{2}}$ is reciprocal.
(b) Find the Fourier sine transform of $\frac{1}{x}$
5. A square plate is bounded by the lines $x=0, y=0, x=20$ and $y=20$. Its faces are insulated. The temparature along uppar horizontal edge is given by $a(x, 20)=$ $\mathrm{x}(20-\mathrm{x})$ when $0<x<20$. While the other three edges are kept at $0^{\circ} \mathrm{C}$. Find the steady state temparature in the plate.
6. (a) Expand the function $\mathrm{f}(\mathrm{x})=-\mathrm{x}$ if $-4 \leq x \leq 0$

$$
=\mathrm{x} \text { if } 0 \leq x \leq 4 \text { a Fourier series }
$$

(b) If $\mathrm{f}(\mathrm{x})=\pi \mathrm{x}, 0<x<1$

$$
=\pi(2-\mathrm{x}), 1<x<2
$$

Find Fourier series in (0, 2)
7. (a) Find the Z - transform of $2^{2 n+1}$
(b) Find $z^{-1}\left[\frac{z^{2}}{(z-1)(z-3)}\right]$
8. (a) Form the partial differential equation by eliminating the arbitrary functions from
$\mathrm{Z}=\mathrm{f}\left(\mathrm{x}+\mathrm{y}+\mathrm{z}, x^{2}+y^{2}+z^{2}\right)$
(b) Form the partial differential equation by eliminating the arbitrary functions from $x y+y z+z x=f\left(\frac{z}{x+y}\right)$

