R07

Set No. 2

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: 07A3BS01

Max Marks: 80

[8+8]

1 [16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Find the Z transform of 2^{2n+1}
 - (b) Find $z^{-1} \left[\frac{z^2}{(z-1)(z-3)} \right]$
- 2. Verify Caylay Hamilton theorem and find the inverse of the matrix
- 3. (a) Form the partial differential equation by eliminating the arbitrary functions from $Z = f(x + y + z, x^2 + y^2 + z^2)$
 - (b) Form the partial differential equation by eliminating the arbitrary functions
 - (b) Form the partial differential equation by eminimating the arbitrary functions from $xy + yz + zx = f\left(\frac{z}{x+y}\right)$ [8+8]
- 4. A square plate is bounded by the lines x = 0, y = 0, x = 20 and y = 20. Its faces are insulated. The temparature along upper horizontal edge is given by a(x, 20) = x(20 x) when 0 < x < 20. While the other three edges are kept at 0^{0} C. Find the steady state temparature in the plate. [16]
- 5. (a) Expand the function f(x) = -x if $-4 \le x \le 0$ = x if $0 \le x \le 4$ a Fourier series
 - (b) If $f(x) = \pi x, 0 < x < 1$ = $\pi (2 - x), 1 < x < 2$. Find Fourier series in (0, 2) [8+8]

6. (a) Show that the matrix $\begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3-i & 4 \end{bmatrix}$ is a Hermitian matrix. (b) If $A = \begin{bmatrix} 0 & 1+2i \\ 1+2i & 0 \end{bmatrix}$ Show that $(I - A)(I + A)^{-1}$ is a Unitary matrix.

(b) If A =
$$\begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$$
 Show that $(I - A)(I + A)^{-1}$ is a Unitary matrix.
[8+8]

7. (a) Find the rank of the matrix by reducing it to the normal form $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$

8. (a) Find the Fourier Cosine transform of e^{-x^2} is reciprocal. (b) Find the Fourier sine transform of $\frac{1}{x}$ [8+8]

RANKER

 $\mathbf{R07}$

II B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: 07A3BS01

Max Marks: 80

[8+8]

Answer any FIVE Questions All Questions carry equal marks ****

- 1. (a) Find the Fourier Cosine transform of e^{-x^2} is reciprocal.
 - (b) Find the Fourier sine transform of $\frac{1}{r}$
- 2. A square plate is bounded by the lines x = 0, y = 0, x = 20 and y = 20. Its faces are insulated. The temparature along uppar horizontal edge is given by a(x, 20) = x(20 x) when 0 < x < 20. While the other three edges are kept at 0^{0} C. Find the steady state temparature in the plate. [16]

3. (a) Show that the matrix
$$\begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3-i & 4 \end{bmatrix}$$
 is a Hermitian matrix.

(b) If A =
$$\begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$$
 Show that $(\mathbf{I} - \mathbf{A})(\mathbf{I} + \mathbf{A})^{-1}$ is a Unitary matrix.

- 4. (a) Find the rank of the matrix by reducing it to the normal form $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$ (b) Find the rank of the matrix by reducing it to the Echelon form $\begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4 \end{bmatrix}$ $\begin{bmatrix} 8+8 \end{bmatrix}$
- 5. (a) Expand the function f(x) = -x if $-4 \le x \le 0$ = x if $0 \le x \le 4$ a Fourier series
 - (b) If $f(x) = \pi x$, 0 < x < 1= $\pi (2 - x)$, 1 < x < 2. Find Fourier series in (0, 2) [8+8]
- 6. (a) Form the partial differential equation by eliminating the arbitrary functions from
 Z = f(x + y + z, x² + y² + z²)
 - (b) Form the partial differential equation by eliminating the arbitrary functions from xy + yz + zx = $f\left(\frac{z}{x+y}\right)$ [8+8]
- 7. (a) Find the Z transform of 2^{2n+1}

Code No: 07A3BS01	R07	Set	N	Jo.	4
(b) Find $z^{-1} \left[\frac{z^2}{(z-1)(z-3)} \right]$					[8+8]
(b) Find $z^{-1} \left\lfloor \frac{z^2}{(z-1)(z-3)} \right\rfloor$ 8. Verify Caylay - Hamilton theore	em and find the inver	se of the matrix	$\left[\begin{array}{c}1\\2\\1\end{array}\right]$	$ \begin{array}{c} 0 \\ 1 \\ -1 \end{array} $	$\begin{bmatrix} 3 \\ -1 \\ 1 \\ [16] \end{bmatrix}$

FRANKER

R07

Set No. 1

II B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: 07A3BS01

Max Marks: 80

 $\begin{bmatrix} 1 \\ 16 \end{bmatrix}$

[8+8]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Verify Caylay Hamilton theorem and find the inverse of the matrix 2 1
- 2. (a) Find the Z transform of 2^{2n+1}
 - (b) Find $z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right]$
- 3. A square plate is bounded by the lines x = 0, y = 0, x = 20 and y = 20. Its faces are insulated. The temparature along upper horizontal edge is given by a(x, 20) = x(20 x) when 0 < x < 20. While the other three edges are kept at 0^{0} C. Find the steady state temparature in the plate. [16]
- 4. (a) Form the partial differential equation by eliminating the arbitrary functions from $Z = f(x + y + z, x^2 + y^2 + z^2)$
 - (b) Form the partial differential equation by eliminating the arbitrary functions from $xy + yz + zx = f\left(\frac{z}{x+y}\right)$ [8+8]

(a) Find the rank of the matrix by reducing it to the normal form $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$ 5.

- (b) Find the rank of the matrix by reducing it to the Echelon form $\begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4 \end{bmatrix}$ [8+8]
- 6. (a) Find the Fourier Cosine transform of e^{-x^2} is reciprocal.
 - (b) Find the Fourier sine transform of $\frac{1}{x}$ [8+8]

7. (a) Show that the matrix
$$\begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3-i & 4 \end{bmatrix}$$
 is a Hermitian matrix.
(b) If $A = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$ Show that $(I - A)(I + A)^{-1}$ is a Unitary matrix.
[8+8]

 $\mathbf{R07}$

Set No. 1

- 8. (a) Expand the function f(x) = -x if $-4 \le x \le 0$ = x if $0 \le x \le 4$ a Fourier series
 - (b) If $f(x) = \pi x$, 0 < x < 1= $\pi (2 - x)$, 1 < x < 2. Find Fourier series in (0, 2)

Code No: 07A3BS01

[8+8]

RANGER

 $\mathbf{R07}$

II B.TECH – I SEM EXAMINATIONS, NOVEMBER - 2010

MATHEMATICS - II

Common to CE, CHEM, AE, BT, MMT

Time: 3 hours

Code No: 07A3BS01

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. (a) Show that the matrix $\begin{bmatrix} 3 & 7-4i & -2+5i \\ 7+4i & -2 & 3+i \\ -2-5i & 3-i & 4 \end{bmatrix}$ is a Hermitian matrix. (b) If $A = \begin{bmatrix} 0 & 1+2i \\ -1+2i & 0 \end{bmatrix}$ Show that $(I - A)(I + A)^{-1}$ is a Unitary matrix. [8+8] 2. Verify Caylay - Hamilton theorem and find the inverse of the matrix $\begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ [16] 3. (a) Find the rank of the matrix by reducing it to the normal form $\begin{bmatrix} 2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6 \end{bmatrix}$ (b) Find the rank of the matrix by reducing it to the Echelon form $\begin{bmatrix} 8 & 1 & 3 & 6 \\ 0 & 3 & 2 & 2 \\ -8 & -1 & -3 & 4 \\ [8+8] \end{bmatrix}$ 4. (a) Find the Fourier Cosine transform of e^{-x^2} is reciprocal.

- (b) Find the Fourier sine transform of $\frac{1}{r}$ [8+8]
- 5. A square plate is bounded by the lines x = 0, y = 0, x = 20 and y = 20. Its faces are insulated. The temparature along uppar horizontal edge is given by a(x, 20) = x(20 x) when 0 < x < 20. While the other three edges are kept at 0^{0} C. Find the steady state temparature in the plate. [16]
- 6. (a) Expand the function f(x) = -x if $-4 \le x \le 0$ = x if $0 \le x \le 4$ a Fourier series
 - (b) If $f(x) = \pi x$, 0 < x < 1= $\pi (2 - x)$, 1 < x < 2. Find Fourier series in (0, 2) [8+8]
- 7. (a) Find the Z transform of 2^{2n+1}

(b) Find
$$z^{-1}\left[\frac{z^2}{(z-1)(z-3)}\right]$$
 [8+8]

Code No: 07A3BS01

$\mathbf{R07}$

Set No. 3

- 8. (a) Form the partial differential equation by eliminating the arbitrary functions from $\mathbf{Z} = \mathbf{f}(\mathbf{x}+\mathbf{y}+\mathbf{z},\,x^2+y^2+z^2)$
 - (b) Form the partial differential equation by eliminating the arbitrary functions from xy + yz + zx = $f\left(\frac{z}{x+y}\right)$ [8+8]

FRANKER