R07

Set No. 2

8+8

II B.Tech I Semester Examinations, November 2010 MATHEMATICS - III Common to ICE, E.COMP.E, ETM, E.CONT.E, EIE, ECE, EEE Time: 3 hours Max Marks: 80 Answer any FIVE Questions

All Questions carry equal marks ****

- 1. (a) Expand $f(z) = \frac{e^{2z}}{(z-1)^3}$ about z=1 as a Laurent series. Also find the region of convergence.
 - (b) Find the Taylor series for $\frac{z}{z+2}$ about z=1, also find the region of convergence.
- (a) Use method of contour integration to prove that 2. $-2acos\theta$ 0 < a < 1.

(b) Evaluate
$$\int_{0}^{\infty} \frac{dx}{(x^2+9)(x^2+4)^2}$$
 using residue theorem. [8+8]

3. Prove that
$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$$
 [16]

- (a) Find the poles and residues at each pole of the function $\frac{(2z+1)}{(z^2-z-2)}$. 4.
 - (b) Evaluate $\int_{C} \frac{(3z-4)dz}{z(z-1)(z-2)}$ by residue theorem.where C:|z| = 3. [8+8] (a) Evaluate $\int_{1-i}^{2+3i} (z^2+z)dz$ along x=t and y=t² using Cauchy's integral formula.
- 5.
 - (b) Evaluate $\int_C \frac{\sin^6 z \, dz}{(z-\frac{\pi}{2})^3}$ where C is |z| = 1 using Cauchy's integral formula.
 - (c) Evaluate $\int_C \frac{\cos \pi z^2 dz}{(z-1)(z-2)}$ where C is |z| = 3 using Cauchy's integral formula. [5+5+6]
- (a) State necessary condition for f (z) to be analytic and derive C-R equations 6. in Cartesian coordinates.
 - (b) If u and v are functions of x and y satisfying Laplace's equations show that (s+it) is analytic where $s = \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$ and $t = \frac{\partial u}{\partial x^{\perp}} + \frac{\partial v}{\partial y}$. [8+8]
- 7. Evaluate using $\beta \Gamma$ functions.

(a)
$$\int_{0}^{1} x^{2} (\log \frac{1}{x})^{3} dx$$

(b) $\int_{0}^{\pi/2} \sin^{7/2} \theta \cos^{3/2} \theta d\theta$

$$\mathbf{R07}$$

Set No. 2

(c) Show that
$$\int_{-1}^{1} (1+x)^{m-1} (1-x)^{n-1} dx = 2^{m+n+1} \beta(m,n).$$
 [5+5+6]

- 8. (a) Show that the transformation w=z+1/z maps the circle |z|=c into the ellipse $u=(c+1/c)\cos\theta$, $v=(c-1/c)\sin\theta$. Also discuss the case when c=1 in detail.
 - (b) Find the bilinear transformation which maps the points (2, i, -2) into the points (l, i, -l). [8+8]

R07

Set No. 4

II B.Tech I Semester Examinations, November 2010 MATHEMATICS - III Common to ICE, E.COMP.E, ETM, E.CONT.E, EIE, ECE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

1. (a) Use method of contour integration to prove that $\int_{0}^{2\pi} \frac{d\theta}{1+a^2-2a\cos\theta} = \frac{2\pi}{1-a^2},$ [8+8] 0 < a < 1.

- (b) Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2+9)(x^2+4)^2}$ using residue theorem.
- 2. Prove that $\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$. [16]
- (a) Show that the transformation w=z+1/z maps the circle |z|=c into the ellipse 3. $u=(c+1/c)\cos\theta$, $v=(c-1/c)\sin\theta$. Also discuss the case when c=1 in detail.
 - (b) Find the bilinear transformation which maps the points (2, i, -2) into the points (l, i, -l). |8+8|
- (a) State necessary condition for f(z) to be analytic and derive C-R equations 4. in Cartesian coordinates.
 - (b) If u and v are functions of x and y satisfying Laplace's equations show that (s+it) is analytic where $s = \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$ and $t = \frac{\partial u}{\partial x^{\perp}} + \frac{\partial v}{\partial y}$. [8+8]
- 5. (a) Expand $f(z) = \frac{e^{2z}}{(z-1)^3}$ about z=1 as a Laurent series. Also find the region of
 - (b) Find the Taylor series for $\frac{z}{z+2}$ about z=1, also find the region of convergence. [8+8]
- (a) Evaluate $\int_{-\infty}^{2+3i} (z^2 + z) dz$ along x=t and y=t² using Cauchy's integral formula. 6.
 - (b) Evaluate $\int_C \frac{\sin^6 z \, dz}{(z \frac{\pi}{2})^3}$ where C is |z| = 1 using Cauchy's integral formula.
 - (c) Evaluate $\int_{C} \frac{\cos \pi z^2 dz}{(z-1)(z-2)}$ where C is |z| = 3 using Cauchy's integral formula. [5+5+6]
- 7. Evaluate using $\beta \Gamma$ functions.

(a)
$$\int_{0}^{1} x^{2} (\log \frac{1}{x})^{3} dx$$

(b) $\int_{0}^{\pi/2} \sin^{7/2} \theta \cos^{3/2} \theta d\theta$

R07

Set No. 4

(c) Show that
$$\int_{-1}^{1} (1+x)^{m-1} (1-x)^{n-1} dx = 2^{m+n+1} \beta(m,n).$$
 [5+5+6]

- (a) Find the poles and residues at each pole of the function $\frac{(2z+1)}{(z^2-z-2)}$. 8.
 - (b) Evaluate $\int_C \frac{(3z-4)dz}{z(z-1)(z-2)}$ by residue theorem.where C:|z| = 3. [8+8]

FRANKER

R07

Set No. 1

II B.Tech I Semester Examinations, November 2010 MATHEMATICS - III Common to ICE, E.COMP.E, ETM, E.CONT.E, EIE, ECE, EEE Time: 3 hours Max Marks: 80 Answer any FIVE Questions All Questions carry equal marks

- (a) Show that the transformation w=z+1/z maps the circle |z|=c into the ellipse 1. $u=(c+1/c)\cos\theta$, $v=(c-1/c)\sin\theta$. Also discuss the case when c=1 in detail.
 - (b) Find the bilinear transformation which maps the points (2, i, -2) into the points (l, i, -l). 8+8
- (a) Use method of contour integration to prove that 2. $-2acos\theta$ 0 < a < 1.

(b) Evaluate
$$\int_{0}^{\infty} \frac{dx}{(x^2+9)(x^2+4)^2}$$
 using residue theorem. [8+8]

3. Prove that
$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$$
 [16]

- (a) Find the poles and residues at each pole of the function $\frac{(2z+1)}{(z^2-z-2)}$. 4.
 - (b) Evaluate $\int_{C} \frac{(3z-4)dz}{z(z-1)(z-2)}$ by residue theorem.where C:|z| = 3. [8+8] (a) Evaluate $\int_{1-i}^{2+3i} (z^2+z)dz$ along x=t and y=t² using Cauchy's integral formula.
- 5.
 - (b) Evaluate $\int_C \frac{\sin^6 z \, dz}{(z-\frac{\pi}{2})^3}$ where C is |z| = 1 using Cauchy's integral formula.
 - (c) Evaluate $\int_C \frac{\cos \pi z^2 dz}{(z-1)(z-2)}$ where C is |z| = 3 using Cauchy's integral formula. [5+5+6]
- (a) State necessary condition for f (z) to be analytic and derive C-R equations 6. in Cartesian coordinates.
 - (b) If u and v are functions of x and y satisfying Laplace's equations show that (s+it) is analytic where $s = \frac{\partial u}{\partial y} \frac{\partial v}{\partial x}$ and $t = \frac{\partial u}{\partial x^{\perp}} + \frac{\partial v}{\partial y}$. [8+8]
- 7. Evaluate using $\beta \Gamma$ functions.

(a)
$$\int_{0}^{1} x^{2} (\log \frac{1}{x})^{3} dx$$

(b) $\int_{0}^{\pi/2} \sin^{7/2} \theta \cos^{3/2} \theta d\theta$

$\mathbf{R07}$

Set No. 1

- (c) Show that $\int_{-1}^{1} (1+x)^{m-1} (1-x)^{n-1} dx = 2^{m+n+1} \beta(m,n).$ [5+5+6]
- 8. (a) Expand $f(z) = \frac{e^{2z}}{(z-1)^3}$ about z=1 as a Laurent series. Also find the region of convergence.
 - (b) Find the Taylor series for $\frac{z}{z+2}$ about z=1, also find the region of convergence. [8+8]

FRANKER

 $\mathbf{R07}$

Set No. 3

II B.Tech I Semester Examinations, November 2010 MATHEMATICS - III Common to ICE, E.COMP.E, ETM, E.CONT.E, EIE, ECE, EEE Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- (a) Use method of contour integration to prove that $\int_{0}^{2\pi} \frac{d\theta}{1+a^2-2a\cos\theta} = \frac{2\pi}{1-a^2},$ 0 < a < 1.[8+8]
 - (b) Evaluate $\int_{0}^{\infty} \frac{dx}{(x^2+9)(x^2+4)^2}$ using residue theorem.
- (a) Show that the transformation w=z+1/z maps the circle |z|=c into the ellipse 2. $u=(c+1/c)\cos\theta$, $v=(c-1/c)\sin\theta$. Also discuss the case when c=1 in detail.
 - (b) Find the bilinear transformation which maps the points (2, i, -2) into the points (l, i, -l). [8+8]
- (a) Find the poles and residues at each pole of the function $\frac{(2z+1)}{(z^2-z-2)}$. 3.
 - (b) Evaluate $\int_C \frac{(3z-4)dz}{z(z-1)(z-2)}$ by residue theorem.where C:|z| = 3. [8+8]
- 4. Evaluate using $\beta \Gamma$ functions (a) $\int_{0}^{1} x^{2} (\log \frac{1}{x})^{3} dx$ (b) $\int_{0}^{\pi/2} \sin^{7/2} \theta \cos^{3/2} \theta d\theta$
 - (c) Show that $\int_{-1}^{1} (1+x)^{m-1} (1-x)^{n-1} dx = 2^{m+n+1} \beta(m,n).$ [5+5+6]
- 5. (a) Evaluate $\int_{1-i}^{2+3i} (z^2+z)dz$ along x=t and y=t² using Cauchy's integral formula.
 - (b) Evaluate $\int_C \frac{\sin^6 z \, dz}{(z \frac{\pi}{2})^3}$ where C is |z| = 1 using Cauchy's integral formula.
 - (c) Evaluate $\int_C \frac{\cos \pi z^2 dz}{(z-1)(z-2)}$ where C is |z| = 3 using Cauchy's integral formula. [5+5+6]
- (a) State necessary condition for f(z) to be analytic and derive C-R equations 6. in Cartesian coordinates.
 - (b) If u and v are functions of x and y satisfying Laplace's equations show that (s+it) is analytic where $s = \frac{\partial u}{\partial y} - \frac{\partial v}{\partial x}$ and $t = \frac{\partial u}{\partial x^{\perp}} + \frac{\partial v}{\partial y}$. [8+8]

Code No: 07A3BS02 R07 Set No. 3

7. Prove that
$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$$
 [16]

- 8. (a) Expand $f(z) = \frac{e^{2z}}{(z-1)^3}$ about z=1 as a Laurent series. Also find the region of convergence.
 - (b) Find the Taylor series for $\frac{z}{z+2}$ about z=1, also find the region of convergence. [8+8]

FRANKER