II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN
Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Draw the circuit diagram of a 4-bit subtractor, adder using 2's complement method
(b) Design a logic circuit to encode a 2^{n} input bits to n bit output.
2. (a) Given the binary numbers $\mathrm{A}=1110.1, \mathrm{~B}=100.01, \mathrm{C}=10011.1$ Perform the following binary operations:
i. $A+B$
ii. AB
iii. A. B
iv. A / B
(b) Explain the procedure to convert hexadecimal number to a decimal number with an example.
3. Discuss about Threshold logic. Explain the Capabilities and limitations of Threshold gate.
4. A State table is given below. It is the minimal state table. Give a proper state assignment. Design the circuit for this state table using JK flip flop.
[16]

PS	NEXT STATE		Out put, Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
A	B	A	1	1
B	C	A	1	0
C	D	E	0	0
D	D	A	0	1
E	B	A	1	1

5. (a) State the purpose of reducing the switching functions to minimal form
(b) Write the Dual of
i. $\left(\mathrm{A}+\mathrm{BC}^{\prime}+\mathrm{AB}\right)$
ii. $\left(A B+B^{\prime} C+C D\right)$
(c) Give the truth table for the Boolean expression $\left(\mathrm{X}^{\prime}+\mathrm{Y}\right)^{\prime}$
$[4+8+4]$
6. Using Q-M method to determine the prime implicants and obtain the possible minimal expression for the following function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(8,12,13,18,19,21,22,24,25,28,30,31)+\mathrm{d}(1,2,4,6,7,11,26)$
7. A sequential circuit has 2 flip flops (A and B), two inputs (x and y), and an output (z). The state equations are given as

$$
\begin{array}{ll}
\mathrm{JA}=\mathrm{xB}+y^{\prime} B^{\prime} & \mathrm{KA}=x y^{\prime} B^{\prime} \\
\mathrm{JB}=\mathrm{xA}^{\prime} & \mathrm{KB}=\mathrm{xy}^{\prime}+\mathrm{A}
\end{array}
$$

$$
\mathrm{Z}=\mathrm{xy} \mathrm{~A}+x^{\prime} y^{\prime} B
$$

Obtain the state table and state diagram from the state equations. Draw an ASM chart for the above mentioned design.
8. (a) Give a detailed comparison between combinational logic circuits and sequential logic circuits.
(b) Design a basic flip flop and explain its operation.

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN
Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Using Q-M method to determine the prime implicants and obtain the possible minimal expression for the following function
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\operatorname{m}(8,12,13,18,19,21,22,24,25,28,30,31)+\mathrm{d}(1,2,4,6,7,11,26) \quad[16]$
2. A sequential circuit has 2 flip flops (A and B), two inputs (x and y), and an ortput (z). The state equations are given as
$J \mathrm{~A}=\mathrm{xB}+y^{\prime} B^{\prime} \quad \mathrm{KA}=x y^{\prime} B^{\prime}$
$\mathrm{JB}=\mathrm{xA}^{\prime} \quad \mathrm{KB}=\mathrm{xy}^{\prime}+\mathrm{A}$
$\mathrm{Z}=\mathrm{xy} \mathrm{A}+x^{\prime} y^{\prime} B$
Obtain the state table and state diagram from the state-equations. Draw an ASM chart for the above mentioned design.
3. (a) Draw the circuit diagram of a 4-bit subtractor, adder using 2's complement method
(b) Design a logic circuit to encode a 2^{n} input bits to n bit output.
4. (a) State the purpose of reducing the switching functions to minimal form
(b) Write the Dual of
i. $\left(A+B C^{\prime}+A B\right)$
ii. $\left(A B+B^{\prime} C+C D\right)$
(c) Give the truth table for the Boolean expression $\left(\mathrm{X}^{\prime}+\mathrm{Y}\right)^{\prime}$
5. (a) Given the binary numbers $\mathrm{A}=1110.1, \mathrm{~B}=100.01, \mathrm{C}=10011.1$ Perform the following binary operations:
i. $\mathrm{A}+\mathrm{B}$
ii. AB
iii. A. B
iv. A / B
(b) Explain the procedure to convert a hexadecimal number to a decimal number with an example.
$[12+4]$
6. (a) Give a detailed comparison between combinational logic circuits and sequential logic circuits.
(b) Design a basic flip flop and explain its operation.
7. A State table is given below. It is the minimal state table. Give a proper state assignment. Design the circuit for this state table using JK flip flop.

PS	NEXT STATE		Out put, Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
A	B	A	1	1
B	C	A	1	0
C	D	E	0	0
D	D	A	0	1
E	B	A	1	1

8. Discuss about Threshold logic. Explain the Capabilities and limitations of Threshold gate.

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN
Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. A State table is given below. It is the minimal state table. Give a proper state assignment. Design the circuit for this state table using JK flip flop.

PS	NEXT STATE		Out put, Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
A	B	A	1	1
B	C	A	1	0
C	D	E	0	0
D	D	A	0	1
E	B	A	1	1

2. (a) Draw the circuit diagram of a 4-bit subtractor, adder using 2's complement method
(b) Design a logic circuit to encode a 2^{n} input bits to n bit output.
3. A sequential circuit has 2 flip flops (A and B), two inputs (x and y), and an output (z). The state equations are given as $\mathrm{JA}=\mathrm{xB}+y^{\prime} B^{\prime}$ $\mathrm{KA}=x y^{\prime} B^{\prime}$
$\mathrm{JB}=\mathrm{xA}^{\prime} \quad \mathrm{KB}=\mathrm{xy}^{\prime}+\mathrm{A}$
$\mathrm{Z}=x y \mathrm{~A}+x^{\prime} y^{\prime} B$
Obtain the state table and state diagram from the state equations. Draw an ASM chart for the above mentioned design.
4. (a) Given the binary numbers $\mathrm{A}=1110.1, \mathrm{~B}=100.01, \mathrm{C}=10011.1$ Perform the following binary operations:
i. $\mathrm{A}+\mathrm{B}$
ii. AB
iii. A. B
iv. A / B
(b) Explain the procedure to convert a hexadecimal number to a decimal number with an example.
$[12+4]$
5. (a) Give a detailed comparison between combinational logic circuits and sequential logic circuits.
(b) Design a basic flip flop and explain its operation.
6. Using Q-M method to determine the prime implicants and obtain the possible minimal expression for the following function $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(8,12,13,18,19,21,22,24,25,28,30,31)+\mathrm{d}(1,2,4,6,7,11,26)$
7. Discuss about Threshold logic. Explain the Capabilities and limitations of Threshold gate.
8. (a) State the purpose of reducing the switching functions to minimal form
(b) Write the Dual of
i. $\left(\mathrm{A}+\mathrm{BC}^{\prime}+\mathrm{AB}\right)$
ii. $\left(A B+B^{\prime} C+C D\right)$
(c) Give the truth table for the Boolean expression $\left(\mathrm{X}^{\prime}+\mathrm{Y}\right)^{\prime}$

$$
[4+8+4]
$$

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN
Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Using Q-M method to determine the prime implicants and obtain the possible minimal expression for the following function
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(8,12,13,18,19,21,22,24,25,28,30,31)+\mathrm{d}(1,2,4,6,7,11,26)$
2. (a) State the purpose of reducing the switching functions to minimal form
(b) Write the Dual of
i. $\left(A+B^{\prime}+A B\right)$
ii. $\left(A B+B^{\prime} C+C D\right)$
(c) Give the truth table for the Boolean expression $\left(\mathrm{X}^{\prime}+\mathrm{Y}\right)^{\prime}$
$[4+8+4]$
3. (a) Give a detailed comparison between combinational logic circuits and sequential logic circuits.
(b) Design a basic flip floprand explain its operation.
4. (a) Given the binary numbers $\mathrm{A}=1110.1, \mathrm{~B}=100.01, \mathrm{C}=10011.1$ Perform the following binary operations:

iii. A. B
iv. A / B
(b) Explain the procedure to convert a hexadecimal number to a decimal number with an example.
5. A State table is given below. It is the minimal state table. Give a proper state assignment. Design the circuit for this state table using JK flip flop.

PS	NEXT STATE		Out put, Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$	$\mathrm{X}=0$	$\mathrm{X}=1$
A	B	A	1	1
B	C	A	1	0
C	D	E	0	0
D	D	A	0	1
E	B	A	1	1

6. Discuss about Threshold logic. Explain the Capabilities and limitations of Threshold gate.
7. (a) Draw the circuit diagram of a 4-bit subtractor, adder using 2's complement method
(b) Design a logic circuit to encode a 2^{n} input bits to n bit output.
8. A sequential circuit has 2 flip flops (A and B), two inputs (x and y), and an output (z). The state equations are given as
$\mathrm{JA}=\mathrm{xB}+y^{\prime} B^{\prime} \quad \mathrm{KA}=x y^{\prime} B^{\prime}$
$\mathrm{JB}=\mathrm{xA}^{\prime} \quad \mathrm{KB}=\mathrm{xy}^{\prime}+\mathrm{A}$
$\mathrm{Z}=\mathrm{xy} \mathrm{A}+x^{\prime} y^{\prime} B$
Obtain the state table and state diagram from the state equations. Draw an ASM chart for the above mentioned design.
