R07

II B.Tech I Semester Examinations, November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- (a) Draw the circuit diagram of a 4-bit subtractor, adder using 2's complement 1. method
 - (b) Design a logic circuit to encode a 2^n input bits to n bit output. [8+8]
- 2. (a) Given the binary numbers A = 1110.1, B = 100.01, C = 10011.1 Perform the following binary operations:
 - i. A+B
 - ii. AB

Code No: 07A3EC03

- iii. A. B
- iv. A / B
- (b) Explain the procedure to convert a hexadecimal number to a decimal number with an example. [12+4]
- 3. Discuss about Threshold logic. Explain the Capabilities and limitations of Threshold gate. [16]
- 4. A State table is given below. It is the minimal state table. Give a proper state assignment. Design the circuit for this state table using JK flip flop. [16]

PS	NÈXT STATE		Out put, Z	
	$\mathbf{X} = 0$	X = 1	$\mathbf{X} = 0$	X = 1
A	В	А	1	1
В	С	А	1	0
С	D	Е	0	0
D	D	А	0	1
Е	В	А	1	1

- 5. (a) State the purpose of reducing the switching functions to minimal form
 - (b) Write the Dual of
 - i. (A+BC'+AB)
 - ii. (AB+B'C+CD)
 - (c) Give the truth table for the Boolean expression (X'+Y)'[4+8+4]
- 6. Using Q-M method to determine the prime implicants and obtain the possible minimal expression for the following function $F(A,B,C,D) = \Sigma m(8,12,13,18,19,21,22,24,25,28,30,31) + d(1,2,4,6,7,11,26)$ [16]

$\mathbf{R07}$

Set No. 2

[8+8]

7. A sequential circuit has 2 flip flops (A and B), two inputs (x and y), and an output (z). The state equations are given as

 $JA = xB + y'B' \qquad KA = xy'B'$ $JB = xA' \qquad KB = xy' + A$ Z = xyA + x'y'B

Code No: 07A3EC03

Obtain the state table and state diagram from the state equations. Draw an ASM chart for the above mentioned design. [16]

- 8. (a) Give a detailed comparison between combinational logic circuits and sequential logic circuits.
 - (b) Design a basic flip flop and explain its operation.

Code No: 07A3EC03

R07

Set No. 4

II B.Tech I Semester Examinations, November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE Time: 3 hours

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. Using Q-M method to determine the prime implicants and obtain the possible minimal expression for the following function $F(A,B,C,D) = \Sigma m(8,12,13,18,19,21,22,24,25,28,30,31) + d(1,2,4,6,7,11,26)$ [16]
- 2. A sequential circuit has 2 flip flops (A and B), two inputs (x and y), and an output (z). The state equations are given as

JA = xB + y'B'KA = xy'B'JB = xA'KB = xv' + A $\mathbf{Z} = \mathbf{x}\mathbf{y}\mathbf{A} + x'y'B$

Obtain the state table and state diagram from the state equations. Draw an ASM chart for the above mentioned design. [16]

- 3. (a) Draw the circuit diagram of a 4-bit subtractor, adder using 2's complement method
 - (b) Design a logic circuit to encode a 2^n input bits to n bit output. [8+8]
- 4. (a) State the purpose of reducing the switching functions to minimal form
 - (b) Write the Dual of
 - i. (A+BC'+AB)
 - (AB+B'C+CD)ii.
 - (c) Give the truth table for the Boolean expression (X'+Y)'[4+8+4]
- (a) Given the binary numbers A = 1110.1, B = 100.01, C = 10011.1 Perform the 5. following binary operations:
 - i. A+B
 - ii. AB
 - iii. A. B
 - iv. A / B
 - (b) Explain the procedure to convert a hexadecimal number to a decimal number with an example. [12+4]
- (a) Give a detailed comparison between combinational logic circuits and sequential 6. logic circuits.
 - (b) Design a basic flip flop and explain its operation. [8+8]

R07

Code No: 07A3EC03

7. A State table is given below. It is the minimal state table. Give a proper state assignment. Design the circuit for this state table using JK flip flop. [16]

PS	NEXT STATE		Out put, Z	
	$\mathbf{X} = 0$	X = 1	$\mathbf{X} = 0$	X = 1
А	В	А	1	1
В	С	А	1	0
С	D	Е	0	0
D	D	А	0	1
Е	В	А	1	1

8. Discuss about Threshold logic. Explain the Capabilities and limitations of Threshold gate. [16]

R07

II B.Tech I Semester Examinations, November 2010 SWITCHING THEORY AND LOGIC DESIGN

Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE

Time: 3 hours

Code No: 07A3EC03

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

1. A State table is given below. It is the minimal state table. Give a proper state assignment. Design the circuit for this state table using JK flip flop. [16]

PS	NEXT STATE		Out put, Z	
	$\mathbf{X} = 0$	$\mathbf{X} = 1$	$\mathbf{X} = 0$	$\mathbf{X} = 1$
A	В	А	1	1
В	С	А	1	0
С	D	Е	0	0
D	D	А	0	1
Е	В	А	1	1

- 2. (a) Draw the circuit diagram of a 4-bit subtractor, adder using 2's complement method
 - (b) Design a logic circuit to encode a 2^n input bits to n bit output. [8+8]
- 3. A sequential circuit has 2 flip flops (A and B), two inputs (x and y), and an output (z). The state equations are given as

$$JA = xB + y'B' \qquad KA = xy'B'$$

$$JB = xA' \qquad KB = xy' + A$$

$$Z = xyA + x'y'B$$

Obtain the state table and state diagram from the state equations. Draw an ASM chart for the above mentioned design. [16]

- 4. (a) Given the binary numbers A = 1110.1, B = 100.01, C = 10011.1 Perform the following binary operations:
 - i. A+B
 - ii. AB
 - iii. A. B
 - iv. A / B
 - (b) Explain the procedure to convert a hexadecimal number to a decimal number with an example. [12+4]
- 5. (a) Give a detailed comparison between combinational logic circuits and sequential logic circuits.
 - (b) Design a basic flip flop and explain its operation. [8+8]
- 6. Using Q-M method to determine the prime implicants and obtain the possible minimal expression for the following function $F(A,B,C,D) = \Sigma m(8,12,13,18,19,21,22,24,25,28,30,31) + d(1,2,4,6,7,11,26)$ [16]

www.firstranker.com

$\mathbf{R07}$

Set No. 1

- 7. Discuss about Threshold logic. Explain the Capabilities and limitations of Threshold gate. [16]
- 8. (a) State the purpose of reducing the switching functions to minimal form
 - (b) Write the Dual of

Code No: 07A3EC03

- i. (A+BC'+AB)
- ii. (AB+B'C+CD)
- (c) Give the truth table for the Boolean expression (X'+Y)' [4+8+4]

R07

II B.Tech I Semester Examinations,November 2010 SWITCHING THEORY AND LOGIC DESIGN Common to BME, ICE, E.COMP.E, E.CONT.E, EIE, EEE Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks ****

- 1. Using Q-M method to determine the prime implicants and obtain the possible minimal expression for the following function $F(A,B,C,D) = \Sigma m(8,12,13,18,19,21,22,24,25,28,30,31) + d(1,2,4,6,7,11,26) [16]$
- 2. (a) State the purpose of reducing the switching functions to minimal form
 - (b) Write the Dual of

Code No: 07A3EC03

- i. (A+BC'+AB)
- ii. (AB+B'C+CD)
- (c) Give the truth table for the Boolean expression (X'+Y)' [4+8+4]
- 3. (a) Give a detailed comparison between combinational logic circuits and sequential logic circuits.
 - (b) Design a basic flip flop and explain its operation. [8+8]
- 4. (a) Given the binary numbers A = 1110.1, B = 100.01, C = 10011.1 Perform the following binary operations:
 - i, A+B
 - ii. AB
 - iii. A. B
 - iv. A / B
 - (b) Explain the procedure to convert a hexadecimal number to a decimal number with an example. [12+4]
- 5. A State table is given below. It is the minimal state table. Give a proper state assignment. Design the circuit for this state table using JK flip flop. [16]

PS	NEXT STATE		Out put, Z	
	$\mathbf{X} = 0$	X = 1	$\mathbf{X} = 0$	$\mathbf{X} = 1$
А	В	А	1	1
В	С	А	1	0
С	D	Е	0	0
D	D	А	0	1
Е	В	А	1	1

6. Discuss about Threshold logic. Explain the Capabilities and limitations of Threshold gate. [16]

www.firstranker.com

$\mathbf{R07}$

Set No. 3

- 7. (a) Draw the circuit diagram of a 4-bit subtractor, adder using 2's complement method
 - (b) Design a logic circuit to encode a 2^n input bits to n bit output. [8+8]
- 8. A sequential circuit has 2 flip flops (A and B), two inputs (x and y), and an output (z). The state equations are given as

 $JA = xB + y'B' \qquad KA = xy'B'$ $JB = xA' \qquad KB = xy' + A$ Z = xyA + x'y'B

Code No: 07A3EC03

Obtain the state table and state diagram from the state equations. Draw an ASM chart for the above mentioned design. [16]

ANKE 2 2