II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) A joind pdf is
$f_{x, y}(x, y)=\left\{\begin{array}{cc}\frac{1}{a b} & 0<x<a, 0<y<b \\ 0 & \text { elsewhere }\end{array}\right.$
i. Find and sketch $\mathrm{F}_{x, y}(\mathrm{x}, \mathrm{y})$
ii. If $\mathrm{a}<\mathrm{b}$ find $P\left[X+Y \leq \frac{3 a}{4}\right]$
(b) Find a value of const b so that $\mathrm{f}_{x, y}(\mathrm{x}, \mathrm{y})=\mathrm{bxy} \mathrm{y}^{2} \exp (-2 \mathrm{xy}) \mathrm{u}(\mathrm{x}-2) \mathrm{u}(\mathrm{y}-1)$ is valid joint pdf.
$[10+6]$
2. (a) The joint probability function of two R. WS \& Y is given by
$f(x, y)=\left\{\begin{array}{c}c\left(x^{2}+2 y\right) y=0,1,2 \\ y=1,2,3,4 \\ 0 \text { otherwise }\end{array}\right.$ find
i. The value of C
ii. $P(x=2, y=3)$
iii. $P(x<1, y>2)$
iv. Mariginal probability function of X \& Y.
(b) Show that when n is very large ($\mathrm{n} \gg \mathrm{k}$) and P very small the binomial distribution approximates poisson distribution.
3. (a) Explain the terms Joint probability and Conditional probability.
(b) Show that Conditional probability satisfies the three axioms of probability.
(c) Two cards are drawn from a 52 -card deck (the first is not replaced):
i. Given the first card is a queen. What is the probability that the second is also a queen?
ii. Repeat part (i) for the first card a queen and second card a 7 .
iii. What is the probability that both cards will be the queen? $[4+6+6]$
4. (a) Prove that $R_{Y Y}(\tau)=R_{X Y}(\tau) * h(-\tau)$
(b) Prove that $R_{Y Y}(\tau)=R_{Y X}(\tau) * h(\tau)$
5. (a) A WSS random process $\mathrm{X}(\mathrm{t})$ has $\mathrm{R}_{\mathrm{XX}}(\tau)=A_{0}\left[1-\frac{|\mathrm{t}|}{\tau}\right]-\tau \leq t \leq \tau$

$$
=0 \quad \text { else where }
$$

Find power density spectrum.
(b) $\mathrm{R}_{\mathrm{XX}}(\tau)=\frac{A_{0}^{2}}{2} \sin \omega_{0} \tau$. Find $\mathrm{S}_{x x}(\omega)$
6. (a) Explain about the moment generating function of a random variable.
(b) Find the moment generating function of the following.
i. $Y=a x+b$
ii. $Y=\frac{x+a}{b}$
7. For random variables X and Y having $\bar{X}=1, \bar{Y}=2, \sigma_{x}^{2}=6, \sigma_{Y}^{2}=9$ and $\rho=-2 / 3$. Find:
(a) The covariance of X and Y
(b) The covariance of X and Y
(c) The moments m_{20} and m_{2}.
8. (a) Present at least five properties of autocorrelation function of arandom process $\mathrm{X}(\mathrm{t})$ and prove any two of them.
(b) $\mathrm{R}_{\mathrm{XX}}(\tau)=25+\frac{4}{1+6 \tau^{2}}$. Find mean and variance of random process $\mathrm{X}(\mathrm{t}) \cdot[10+6]$

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering Time: 3 hours

Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Present at least five properties of autocorrelation function of a random process $\mathrm{X}(\mathrm{t})$ and prove any two of them.
(b) $\mathrm{R}_{\mathrm{XX}}(\tau)=25+\frac{4}{1+6 \tau^{2}}$. Find mean and variance of random process $\mathrm{X}(\mathrm{t}) \cdot[10+6]$
2. (a) Explain the terms Joint probability and Conditional probability
(b) Show that Conditional probability satisfies the three axioms of probability.
(c) Two cards are drawn from a 52-card deck (the first is not replaced):
i. Given the first card is a queen. What is the probability that the second is also a queen?
ii. Repeat part (i) for the frrst card a queen and second card a 7.
iii. What is the probability that both cards will be the queen? $[4+6+6]$
3. (a) Prove that $R_{Y Y}(\tau)=R_{X Y}(\tau) * h(-\tau)$
(b) Prove that $R_{Y Y}(\tau)=R_{X X}(\tau) * h(\tau) \quad[8+8]$
4. (a) The joint probability function of two R.V's X \& Y is given by
$f(x, y)=\left\{\begin{array}{c}c\left(x^{2}+2 y\right) \quad \begin{array}{l}x=0,1,2 \\ y=1,2,3,4\end{array} \text { find } \\ 0 \text { otherwise }\end{array}\right.$
i. The value of C
ii. $\mathrm{P}(\mathrm{x}=2, \mathrm{y}=3)$
iii. $P(x \leq 1, y>2)$
iv. Mariginal probability function of X \& Y.
(b) Show that when n is very large ($n \gg k$) and P very small the binomial distribution approximates poisson distribution.
[10+6]
5. (a) A joind pdf is
$f_{x, y}(x, y)=\left\{\begin{array}{cc}\frac{1}{a b} & 0<x<a, 0<y<b \\ 0 & \text { elsewhere }\end{array}\right.$
i. Find and sketch $\mathrm{F}_{x, y}(\mathrm{x}, \mathrm{y})$
ii. If $\mathrm{a}<\mathrm{b}$ find $P\left[X+Y \leq \frac{3 a}{4}\right]$
(b) Find a value of const b so that $\mathrm{f}_{x, y}(\mathrm{x}, \mathrm{y})=\mathrm{bxy}^{2} \exp (-2 \mathrm{xy}) \mathrm{u}(\mathrm{x}-2) \mathrm{u}(\mathrm{y}-1)$ is valid joint pdf.
$[10+6]$

Code No: 07A3EC10
R07

Set No. 4

6. For random variables X and Y having $\bar{X}=1, \bar{Y}=2, \sigma_{x}^{2}=6, \sigma_{Y}^{2}=9$ and $\rho=-2 / 3$. Find:
(a) The covariance of X and Y
(b) The covariance of X and Y
(c) The moments m_{20} and m_{2}.
7. (a) A WSS random process $\mathrm{X}(\mathrm{t})$ has $\mathrm{R}_{\mathrm{XX}}(\tau)=A_{0}\left[1-\frac{|\mathbf{t}|}{\tau}\right]-\tau \leq t \leq \tau$

$$
=0 \quad \text { else where }
$$

Find power density spectrum.
(b) $\mathrm{R}_{\mathrm{XX}}(\tau)=\frac{A_{0}^{2}}{2} \sin \omega_{0} \tau$. Find $\mathrm{S}_{x x}(\omega)$
8. (a) Explain about the moment generating function of a raydom yariable.
(b) Find the moment generating function of the following.
i. $Y=a x+b$
ii. $Y=\frac{x+a}{b}$

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks
 * * * *

1. (a) Prove that $R_{Y Y}(\tau)=R_{X Y}(\tau) * h(-\tau)$
(b) Prove that $R_{Y Y}(\tau)=R_{Y X}(\tau) * h(\tau)$
2. (a) Explain about the moment generating function of a random variable.
(b) Find the moment generating function of the following.
i. $Y=a x+b$
ii. $Y=\frac{x+a}{b}$
3. (a) Explain the terms Joint probability and Conditional probability.
(b) Show that Conditional probability satisfies the three axioms of probability.
(c) Two cards are drawn from a 52-card deck (the first is not replaced):
i. Given the first card is a queen. What is the probability that the second is also a queen \qquad
ii. Repeat part (i) for the first card a queen and second card a 7 .
iii. What is the probability that both cards will be the queen? $[4+6+6]$
4. (a) The joint probability function of two R.V's X \& Y is given by
$f(x, y)=\left\{\begin{array}{c}c\left(x^{2}+2 y\right) \quad \begin{array}{l}x=0,1,2 \\ y=1,2,3,4\end{array} \text { find } 10 \text { otherwise } \\ 0 \quad \text { ot }\end{array}\right.$
i. The value of C
ii. $\mathrm{P}(\mathrm{x}=2, \mathrm{y}=3)$
iii. $\mathrm{P}(\mathrm{x} \leq 1, \mathrm{y}>2)$
iv. Mariginal probability function of $\mathrm{X} \& \mathrm{Y}$.
(b) Show that when n is very large ($n \gg k$) and P very small the binomial distribution approximates poisson distribution.
5. (a) Present at least five properties of autocorrelation function of a random process $\mathrm{X}(\mathrm{t})$ and prove any two of them.
(b) $\mathrm{R}_{\mathrm{XX}}(\tau)=25+\frac{4}{1+6 \tau^{2}}$. Find mean and variance of random process $\mathrm{X}(\mathrm{t}) \cdot[10+6]$
6. (a) A WSS random process $\mathrm{X}(\mathrm{t})$ has $\mathrm{R}_{\mathrm{XX}}(\tau)=A_{0}\left[1-\frac{\llcorner 1}{\tau}\right]-\tau \leq t \leq \tau$

$$
=0 \quad \text { else where }
$$

Find power density spectrum.
(b) $\mathrm{R}_{\mathrm{XX}}(\tau)=\frac{A_{0}^{2}}{2} \sin \omega_{0} \tau$. Find $\mathrm{S}_{x x}(\omega)$
7. (a) A joind pdf is
$f_{x, y}(x, y)=\left\{\begin{array}{cc}\frac{1}{a b} & 0<x<a, 0<y<b \\ 0 & \text { elsewhere }\end{array}\right.$
i. Find and sketch $\mathrm{F}_{x, y}(\mathrm{x}, \mathrm{y})$
ii. If $\mathrm{a}<\mathrm{b}$ find $P\left[X+Y \leq \frac{3 a}{4}\right]$
(b) Find a value of const b so that $\mathrm{f}_{x, y}(\mathrm{x}, \mathrm{y})=\mathrm{bxy}^{2} \exp (-2 \mathrm{xy}) \mathrm{u}(\mathrm{x}-2) \mathrm{u}(\mathrm{y}-1)$ is valid joint pdf.
$[10+6]$
8. For random variables X and Y having $\bar{X}=1, \bar{Y}=2, \sigma_{x}^{2}=6, \sigma_{Y}^{2}=9$ and $\beta=-2 / 3$. Find:
(a) The covariance of X and Y
(b) The covariance of X and Y
(c) The moments m_{20} and m_{2}.

II B.Tech I Semester Examinations,November 2010 PROBABILITY THEORY AND STOCHASTIC PROCESSES
Common to Electronics And Computer Engineering, Electronics And Telematics, Electronics And Communication Engineering Time: 3 hours

Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Explain the terms Joint probability and Conditional probability.
(b) Show that Conditional probability satisfies the three axioms of probability.
(c) Two cards are drawn from a 52 -card deck (the first is not replaced):
i. Given the first card is a queen. What is the probability that the second is also a queen?
ii. Repeat part (i) for the first card a queen and second eard a 7.
iii. What is the probability that both cards will be the queen? $[4+6+6]$
2. (a) Present at least five properties of autocorrelation function of a random process $\mathrm{X}(\mathrm{t})$ and prove any two of them.
(b) $\mathrm{R}_{\mathrm{XX}}(\tau)=25+\frac{4}{1+6 \tau^{2}}$. Find mean and variance of random process $\mathrm{X}(\mathrm{t}) \cdot[10+6]$
3. (a) Prove that $R_{Y Y}(\tau)=R_{X Y}(\tau) * h(-\tau)$
(b) Prove that $R_{Y Y}(\tau)=R_{X}(\tau) * h(\tau)$
4. (a) Explain about the moment generating function of a random variable.
(b) Find the moment generating function of the following.
i. $Y=a x+b$
ii. $Y=\frac{x+a}{b}$
5. For random variables X and Y having $\bar{X}=1, \bar{Y}=2, \sigma_{x}^{2}=6, \sigma_{Y}^{2}=9$ and $\rho=-2 / 3$. Find:
(a) The covariance of X and Y
(b) The covariance of X and Y
(c) The moments m_{20} and m_{2}.
6. (a) A WSS random process $\mathrm{X}(\mathrm{t})$ has $\mathrm{R}_{\mathrm{XX}}(\tau)=A_{0}\left[1-\frac{|\mathrm{t}|}{\tau}\right]-\tau \leq t \leq \tau$

$$
=0 \quad \text { else where }
$$

Find power density spectrum.
(b) $\mathrm{R}_{\mathrm{XX}}(\tau)=\frac{A_{0}^{2}}{2} \sin \omega_{0} \tau$. Find $\mathrm{S}_{x x}(\omega)$
7. (a) A joind pdf is

$$
f_{x, y}(x, y)=\left\{\begin{array}{cc}
\frac{1}{a b} & 0<x<a, 0<y<b \\
0 & \text { elsewhere }
\end{array}\right.
$$

i. Find and sketch $\mathrm{F}_{x, y}(\mathrm{x}, \mathrm{y})$
ii. If $\mathrm{a}<\mathrm{b}$ find $P\left[X+Y \leq \frac{3 a}{4}\right]$
(b) Find a value of const b so that $\mathrm{f}_{x, y}(\mathrm{x}, \mathrm{y})=\mathrm{bxy}^{2} \exp (-2 \mathrm{xy}) \mathrm{u}(\mathrm{x}-2) \mathrm{u}(\mathrm{y}-1)$ is valid joint pdf.
8. (a) The joint probability function of two R.V's X \& Y is given by

i. The value of C
ii. $P(x=2, y=3)$
iii. $\mathrm{P}(\mathrm{x} \leq 1, \mathrm{y}>2)$
iv. Mariginal probability function of $\mathrm{X} \& \mathrm{Y}$.
(b) Show that when n is very large $(\mathrm{n} \gg \mathrm{k})$ and P very small the binomial distribution approximates poisson distribution.
$[10+6]$

