II B.Tech I Semester Examinations,November 2010 SIGNALS AND SYSTEMS
Common to BME, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain the Periodicity property of discrete time signal using complex exponential signal.
(b) Consider a left sided sequence $\mathrm{x}[\mathrm{n}]$ with Z transform $X(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}$
i. Express $\mathrm{X}(\mathrm{z})$ as a ratio of polynomials in z instead of
ii. Use partial fraction method to express $X(z)$ as a sum of terms
iii. Determine $\mathrm{x}(\mathrm{n})$
[4+12]
2. (a) Find the Fourier series of the wave shown in figure 1a.

Figure 1a
(b) Determine the Fourier series representation of $\mathrm{x}(\mathrm{t})=2 \operatorname{Sin}(2 \pi \mathrm{t}-3)+\operatorname{Sin}(6 \pi \mathrm{t})$.
3. (a) With the help of graphical example explain sampling theorem for Band limited signals.
(b) Explain briefly Band pass sampling.
4. (a) Determine the Fourier Transform of a trapezoidal function and triangular RF pulse $f(t)$ shown in figure 3a. Draw its spectrum.

Figure 3a
(b) Using Parsevals theorem for power signals, Evaluate $\int_{-\alpha}^{\alpha} e^{-2 t} u(t) d t . \quad[10+6]$
5. (a) Find the output voltage $y(t)$ of the network shown in figure 4 a when the voltage applied to the terminals $a b$ is given by $f(t)=e^{-t / 4} u(t)+e^{-t / 2} u(-t)$

Figure 4a
(b) Show that the impulse response of ideal low pass filter is
$h(t)=\frac{w}{2 \pi} S_{a} \frac{w\left(t-t_{0}\right)}{2}$ for a distortion less transmission plot the impulse response of $h(t)$.
6. (a) Find the even and odd components of the signal $\mathrm{x}(\mathrm{t})=\mathrm{e}^{-2 t} \operatorname{Cos} \mathrm{t}$.
(b) Discuss how an unknown function $f(t)$ can be expressed using Infinite mutually orthogonal functions. Hence, show the representation of a waveform $f(t)$ using Trigonometric Fourier series.
7. (a) Consider an input $x[n]$ and an impulse response $h[n]$ given by

$$
\begin{aligned}
x[n] & =\left(\frac{1}{2}\right)^{n-2} u[n-2], \\
h[n] & =u[n+2] .
\end{aligned}
$$

Determine and plot the output $y[n]=x[n] * h[n]$.
(b) Bring out the relation between Correlation and Convolution.
(c) Explain the properties of Correlation function.

$$
[8+4+4]
$$

8. (a) State and prove the properties of Laplace transforms.
(b) Derive the relation between Laplace transform and Fourier transform of signal.

II B.Tech I Semester Examinations,November 2010 SIGNALS AND SYSTEMS
Common to BME, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain the Periodicity property of discrete time signal using complex exponential signal.
(b) Consider a left sided sequence $\mathrm{x}[\mathrm{n}]$ with Z transform $X(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}$
i. Express $\mathrm{X}(\mathrm{z})$ as a ratio of polynomials in z instead of
ii. Use partial fraction method to express $X(z)$ as a sum of terms
iii. Determine $\mathrm{x}(\mathrm{n})$
2. (a) Find the even and odd components of the signal $x(t)=e^{-2 t}$ Cos t.
(b) Discuss how an unknown function $\mathrm{f}(\mathrm{t}$) can be expressed using Infinite mutually orthogonal functions. Hence, show the representation of a waveform $f(t)$ using Trigonometric Fourier series. [6+10]
3. (a) Find the output voltage $\mathrm{r}(\mathrm{t})$ of the network shown in figure 4 a when the voltage applied to the terminals $a b$ is given by $f(t)=e^{-t / 4} u(t)+e^{-t / 2} u(-t)$

Figure 4a
(b) Show that the impulse response of ideal low pass filter is $h(t)=\frac{w}{2 \pi} S_{a} \frac{w\left(t-t_{0}\right)}{2}$ for a distortion less transmission plot the impulse response of $h(t)$.
4. (a) Consider an input $\mathrm{x}[\mathrm{n}]$ and an impulse response $\mathrm{h}[\mathrm{n}]$ given by
$x[n]=\left(\frac{1}{2}\right)^{n-2} u[n-2]$,
$h[n]=u[n+2]$.
Determine and plot the output $y[n]=x[n] * h[n]$.
(b) Bring out the relation between Correlation and Convolution.
(c) Explain the properties of Correlation function.
5. (a) With the help of graphical example explain sampling theorem for Band limited signals.
(b) Explain briefly Band pass sampling.
6. (a) Find the Fourier series of the wave shown in figure 1a.

Figure 1a
(b) Determine the Fourier series representation of $x(t)=2 \operatorname{Sin}(2 \pi t-3)+\operatorname{Sin}(6 \pi t)$.

$$
[8+8]
$$

7. (a) Determine the Fourier Transforn of a trapezoidal function and triangular RF pulse $f(t)$ shown in figure 3a. Draw its spectrum.

Figure 3a
(b) Using Parsevals theorem for power signals, Evaluate $\int_{-\alpha}^{\alpha} e^{-2 t} u(t) d t . \quad[10+6]$
8. (a) State and prove the properties of Laplace transforms.
(b) Derive the relation between Laplace transform and Fourier transform of signal.

II B.Tech I Semester Examinations,November 2010 SIGNALS AND SYSTEMS
Common to BME, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain the Periodicity property of discrete time signal using complex exponential signal.
(b) Consider a left sided sequence $\mathrm{x}[\mathrm{n}]$ with Z transform $X(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}$
i. Express $\mathrm{X}(\mathrm{z})$ as a ratio of polynomials in z instead of
ii. Use partial fraction method to express $X(z)$ as a sum of terms
iii. Determine $\mathrm{x}(\mathrm{n})$
2. (a) Determine the Fourier Transform of a trapezoidal function and triangular RF pulse $f(t)$ shown in figure 3a. Draw its spectrum.

Figure 3a
(b) Using Parsevals theorem for power signals, Evaluate $\int_{-\alpha}^{\alpha} e^{-2 t} u(t) d t$. $\quad[10+6]$
3. (a) Find the output voltage $v(t)$ of the network shown in figure $4 a$ when the voltage applied to the terminals a b is given by $f(t)=e^{-t / 4} u(t)+e^{-t / 2} u(-t)$

Figure 4a
(b) Show that the impulse response of ideal low pass filter is $h(t)=\frac{w}{2 \pi} S_{a} \frac{w\left(t-t_{0}\right)}{2}$ for a distortion less transmission plot the impulse response of $h(t)$.
4. (a) With the help of graphical example explain sampling theorem for Band limited signals.
(b) Explain briefly Band pass sampling.
5. (a) Consider an input $\mathrm{x}[\mathrm{n}]$ and an impulse response $\mathrm{h}[\mathrm{n}]$ given by

$$
x[n]=\left(\frac{1}{2}\right)^{n-2} u[n-2],
$$

$$
h[n]=u[n+2] .
$$

Determine and plot the output $y[n]=x[n] * h[n]$.
(b) Bring out the relation between Correlation and Convolution.
(c) Explain the properties of Correlation function.
6. (a) State and prove the properties of Laplace transforms.
(b) Derive the relation between Laplace transform and Fourier transform of signal. $[8+8]$
7. (a) Find the even and odd components of the signal $x(t)=e^{-2 t} \operatorname{Cos} t$.
(b) Discuss how an unknown function $\mathrm{f}(\mathrm{t})$ can be expressed using Infinite mutually orthogonal functions. Hence, show the representation of a waveform $f(t)$ using Trigonometric Fourier series.
8. (a) Find the Fourier series of the wave shown in figure 1a.

Figure 1a
(b) Determine the Fourier series representation of $x(t)=2 \operatorname{Sin}(2 \pi t-3)+\operatorname{Sin}(6 \pi t)$.

II B.Tech I Semester Examinations,November 2010 SIGNALS AND SYSTEMS
Common to BME, ETM, E.CONT.E, EIE, ECE
Time: 3 hours
Max Marks: 80
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find the Fourier series of the wave shown in figure 1a.

Figure 1a
(b) Determine the Fourier series representation of $\mathrm{x}(\mathrm{t})=2 \operatorname{Sin}(2 \pi \mathrm{t}-3)-\operatorname{Sin}(6 \pi \mathrm{t})$.
2. (a) Explain the Periodicity property of discrete time signal using complex exponential signal.
(b) Consider a left sided sequence $\mathrm{x}[\mathrm{n}]$ with Z transform
$X(z)=\frac{1}{\left(1-\frac{1}{2} z^{-1}\right)\left(1-z^{-1}\right)}$
i. Express $\mathrm{X}(\mathrm{z})$ as a ratio of polynomials in z instead of z^{-1}
ii. Use partial fraction method to express $\mathrm{X}(\mathrm{z})$ as a sum of terms
iii. Determine $\mathrm{x}(\mathrm{n})$
3. (a) Determine the Fourier Transform of a trapezoidal function and triangular RF pulse $f(t)$ shown in figure 3a. Draw its spectrum.

Figure 3a
(b) Using Parsevals theorem for power signals, Evaluate $\int_{-\alpha}^{\alpha} e^{-2 t} u(t) d t$. $[10+6]$
4. (a) Find the output voltage $y(t)$ of the network shown in figure $4 a$ when the voltage applied to the terminals $a b$ is given by $f(t)=e^{-t / 4} u(t)+e^{-t / 2} u(-t)$

Figure 4a
(b) Show that the impulse response of ideal low pass filter is $h(t)=\frac{w}{2 \pi} S_{a} \frac{w\left(t-t_{0}\right)}{2}$ for a distortion less transmission plot the impulse response of $h(t)$.
5. (a) State and prove the properties of Laplace transforms.
(b) Derive the relation between Laplace transform and Fourier transform of signal. $[8+8]$
6. (a) Find the even and odd components of the signal $x(t)=e^{-2 t} \operatorname{Cos} t$.
(b) Discuss how an unknown function $f(t)$ can be expressed using Infinite mutually orthogonal functions. Hence, show the representation of a waveform $f(t)$ using

Trigonometric Fourier series.

$$
[6+10]
$$

7. (a) Consider an input $\mathrm{x}[\mathrm{n}]$ and an impulse response $\mathrm{h}[\mathrm{n}]$ given by $x[n]=\left(\frac{1}{2}\right)^{n-2} u[n-2]$, $h[n]=u[n+2]$.

Determine and plot the output $y[n]=x[n] * h[n]$.
(b) Bring out the relation between Correlation and Convolution.
(c) Explain the properties of Correlation function.
8. (a) With the help of graphical example explain sampling theorem for Band limited signals.
(b) Explain briefly Band pass sampling.
$[8+8]$

