II B.Tech I Semester Examinations,November 2010 ELECTRONIC CIRCUIT ANALYSIS

Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) For a single stage transistor amplifier, $R_{S}=10 \mathrm{~K}$ and $R_{L}=10 \mathrm{~K}$. The hparameter values are $h_{f c}=-51, h_{i c}=1.1 \mathrm{~K} \Omega, h_{r c} \approx 1, h_{o c}=25 \mu \mathrm{~A} / \mathrm{V}$ Find $A_{I}, A_{V}, A_{V S}, R_{i}$, and R_{o} for the CC transistor configuration.
(b) For a single stage transistor amplifier, $R_{S}=1 \mathrm{~K} \Omega$, and $R_{L} \neq 10 \mathrm{~K}$ 个he h-parameter values are $h_{f e}=50, h_{i e}=1.1 \mathrm{~K} \Omega, h_{r e}=2.5 \times 10^{-4}, h_{o e}=25 \mu \mathrm{~A} / \mathrm{V}$. Find $A_{I}, A_{V}, A_{V S}, R_{i}$, and R_{o} for the CE transistor configuration. [8+8]
2. (a) Define the terms:
i. Load Regulation
ii. Line Regulation
iii. Ripple Rejection
iv. Sense Voltage
(b) In a zener diode regulator,
$\mathrm{Vi}_{\text {nom }}=40 \mathrm{~V}, \mathrm{Vi}_{\min }=35 \mathrm{~V}, \mathrm{Vi}_{\text {max }}=45 \mathrm{~V} \mathrm{~V}_{\mathrm{z}}=20 \mathrm{~V}, \mathrm{r}_{\mathrm{z}}=5 \mathrm{ohms} \mathrm{I}_{\mathrm{L} \min }=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{L} \max }$ $=100 \mathrm{~mA} \mathrm{I}_{\mathrm{zmin}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{zmax}}=400 \mathrm{~mA}$. Find $P_{z \max }$ and load resistance.

$$
[8+8]
$$

3. (a) The basic Switching regulator is designed to maintain a 12 V dc output when the unregulated input voltage varies from 15 V to 24 V . When pass transistor is conducting, its collector to emitter saturation voltage is 0.5 V . Assuming that the load is constant and the LC filter is ideal, find the minimum and maximum duty cycles of the pulse width modulator.
(b) Write the Features and Applications of DC/DC converters
4. (a) Derive the expression for the high 3-dB frequency f_{h}^{*} of n-identical non interacting stages in terms of f_{H} for one stage.
(b) If four identical amplifiers are cascaded each having $f_{H}=100 \mathrm{KHz}$, determine the overall upper 3dB frequency f_{h}^{*}. Assume non interacting stages.
(c) Write a short note on Bootstrapped Darlington circuit.
5. Draw the circuit diagram of a class-B tuned amplifier. Explain its operation with neat waveforms. Also derive the expression for percentage efficiency and maximum power dissipation.
6. Draw the circuit diagram of a Double tuned amplifier and derive the expression for $3-\mathrm{dB}$ bandwidth.
7. (a) Show that in Hybrid $-\pi$ model, the diffusion capacitance is proportional to the emitter bias current.
(b) What is the frequency range to consider Giacolletto model of a transistor at high frequencies? What is the significance of f_{T} in discussing the frequency range of a transistor at high frequencies?
[8+8]
8. (a) Draw the circuit of class -A series fed power amplifier and derive the expression for output power P_{o}.
[10]
(b) Draw and discuss the operation of Class - C power amplifier.

II B.Tech I Semester Examinations,November 2010 ELECTRONIC CIRCUIT ANALYSIS

Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks
 * * * * *

1. Draw the circuit diagram of a Double tuned amplifier and derive the expression for 3 -dB bandwidth.
2. (a) Define the terms:
i. Load Regulation
ii. Line Regulation
iii. Ripple Rejection
iv. Sense Voltage
(b) In a zener diode regulator,
$\mathrm{Vi}_{\text {nom }}=40 \mathrm{~V}, \mathrm{Vi}_{\text {min }}=35 \mathrm{~V}, V \mathrm{i}_{\text {max }}=45 \mathrm{~V} \mathrm{~V}_{\mathrm{z}}=20 \mathrm{~V}, \mathrm{r}_{\mathrm{z}}=5 \mathrm{ohms} \mathrm{I}_{\mathrm{L} \text { min }}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{L} \text { max }}$
$=100 \mathrm{~mA} \mathrm{I}_{\mathrm{zmin}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{zmax}}=400 \mathrm{~mA} . \quad$ Find $P_{z \max }$ and load resistance.

$$
[8+8]
$$

3. (a) The basic Switching regulator is designed to maintain a 12 V dc output when the unregulated input yoltage varies from 15 V to 24 V . When pass transistor is confucting, its collector to emitter saturation voltage is 0.5 V . Assuming that the load is constant and the LC filter is ideal, find the minimum and maximum duty cycles of the pulse width modulator.
(b) Write the Features and Applications of DC/DC converters
4. (a) Draw the circuit of class -A series fed power amplifier and derive the expression for output power P_{o}.
(b) Draw and discuss the operation of Class - C power amplifier.
5. (a) Show that in Hybrid $-\pi$ model, the diffusion capacitance is proportional to the emitter bias current.
(b) What is the frequency range to consider Giacolletto model of a transistor at high frequencies? What is the significance of f_{T} in discussing the frequency range of a transistor at high frequencies?
$[8+8]$
6. Draw the circuit diagram of a class-B tuned amplifier. Explain its operation with neat waveforms. Also derive the expression for percentage efficiency and maximum power dissipation.
7. (a) Derive the expression for the high 3-dB frequency f_{h}^{*} of n-identical non interacting stages in terms of f_{H} for one stage.
(b) If four identical amplifiers are cascaded each having $f_{H}=100 \mathrm{KHz}$, determine the overall upper 3 dB frequency f_{h}^{*}. Assume non interacting stages.
(c) Write a short note on Bootstrapped Darlington circuit.
8. (a) For a single stage transistor amplifier, $R_{S}=10 \mathrm{~K}$ and $R_{L}=10 \mathrm{~K}$. The hparameter values are $h_{f c}=-51, h_{i c}=1.1 \mathrm{~K} \Omega, h_{r c} \approx 1, h_{o c}=25 \mu \mathrm{~A} / \mathrm{V}$ Find $A_{I}, A_{V}, A_{V S}, R_{i}$, and R_{o} for the CC transistor configuration.
(b) For a single stage transistor amplifier, $R_{S}=1 \mathrm{~K} \Omega$, and $R_{L}=10 \mathrm{~K}$ The h-parameter values are $h_{f e}=50, h_{i e}=1.1 \mathrm{~K} \Omega, h_{r e}=2.5 \times 10^{-4}, h_{o e}=25 \mu \mathrm{~A} / \mathrm{V}$. Find $A_{I}, A_{V}, A_{V S}, R_{i}$, and R_{o} for the CE transistor configuration.

II B.Tech I Semester Examinations,November 2010 ELECTRONIC CIRCUIT ANALYSIS
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) The basic Switching regulator is designed to maintain a 12 V dc output when the unregulated input voltage varies from 15 V to 24 V . When pass transistor is conducting, its collector to emitter saturation voltage is 0.5 V . Assuming that the load is constant and the LC filter is ideal, find the minimum and maximum duty cycles of the pulse width modulator.
(b) Write the Features and Applications of DC/DC Converters
2. Draw the circuit diagram of a class-B tunedamplifier. Explain its operation with neat waveforms. Also derive the expression for percentage efficiency and maximum power dissipation.
3. (a) Derive the expression for the high 3-dB frequency f_{h}^{*} of n-identical non interacting stages in terms of f_{H} for one stage.
(b) If four identical amplifiers are cascaded each having $f_{H}=100 \mathrm{KHz}$, determine the overall upper 3 dB frequency f_{h}^{*}. Assume non interacting stages.
(c) Write short note on Bootstrapped Darlington circuit.
4. (a) For a single stage transistor amplifier, $R_{S}=10 \mathrm{~K}$ and $R_{L}=10 \mathrm{~K}$. The hparameter values are $h_{f c}=-51, h_{i c}=1.1 \mathrm{~K} \Omega, h_{r c} \approx 1, h_{o c}=25 \mu \mathrm{~A} / \mathrm{V}$ Find $A_{I}, A_{V}, A_{V S}, R_{i}$, and R_{o} for the CC transistor configuration.
(b) For a single stage transistor amplifier, $R_{S}=1 \mathrm{~K} \Omega$, and $R_{L}=10 \mathrm{~K}$ The h-parameter values are $h_{f e}=50, h_{i e}=1.1 \mathrm{~K} \Omega, h_{r e}=2.5 \times 10^{-4}, h_{o e}=25 \mu \mathrm{~A} / \mathrm{V}$. Find $A_{I}, A_{V}, A_{V S}, R_{i}$, and R_{o} for the CE transistor configuration. [8+8]
5. (a) Define the terms:
i. Load Regulation
ii. Line Regulation
iii. Ripple Rejection
iv. Sense Voltage
(b) In a zener diode regulator,
$\mathrm{Vi}_{\text {nom }}=40 \mathrm{~V}, \mathrm{Vi}_{\text {min }}=35 \mathrm{~V}, \mathrm{Vi}_{\text {max }}=45 \mathrm{~V} \mathrm{~V}_{\mathrm{z}}=20 \mathrm{~V}, \mathrm{r}_{\mathrm{z}}=5$ ohms $\mathrm{I}_{\mathrm{Lmin}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{L} \max }$ $=100 \mathrm{~mA} \mathrm{I}_{z \min }=10 \mathrm{~mA}, \mathrm{I}_{\text {zmax }}=400 \mathrm{~mA}$. Find $P_{z \max }$ and load resistance.

$$
[8+8]
$$

6. Draw the circuit diagram of a Double tuned amplifier and derive the expression for $3-\mathrm{dB}$ bandwidth.
7. (a) Show that in Hybrid - π model, the diffusion capacitance is proportional to the emitter bias current.
(b) What is the frequency range to consider Giacolletto model of a transistor at high frequencies? What is the significance of f_{T} in discussing the frequency range of a transistor at high frequencies?
[8+8]
8. (a) Draw the circuit of class -A series fed power amplifier and derive the expression for output power P_{o}.
[10]
(b) Draw and discuss the operation of Class - C power amplifier.

II B.Tech I Semester Examinations,November 2010 ELECTRONIC CIRCUIT ANALYSIS

Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
All Questions carry equal marks

1. (a) The basic Switching regulator is designed to maintain a 12 V dc output when the unregulated input voltage varies from 15 V to 24 V . When pass transistor is conducting, its collector to emitter saturation voltage is 0.5 V . Assuming that the load is constant and the LC filter is ideal, find the minimum and maximum duty cycles of the pulse width modulator.
(b) Write the Features and Applications of DC/DC converters
2. (a) Derive the expression for the high $3-\mathrm{dB}$ frequency f_{h}^{*} of n-identical non interacting stages in terms of f_{H} for one stage:
(b) If four identical amplifiers are cascaded each having $f_{H}=100 \mathrm{KHz}$, determine the overall upper 3 dB frequency δ_{h}. Assume non interacting stages.
(c) Write a short note on Bootstrapped Darlington circuit.
3. Draw the circuit diagtam of a Double tuned amplifier and derive the expression for $3-\mathrm{dB}$ bandwidth.
4. (a) Define the terms:
i. Load Regulation
ii. Dine Regulation
iii. Ripple Rejection
iv. Sense Voltage
(b) In a zener diode regulator,
$\mathrm{Vi}_{\text {nom }}=40 \mathrm{~V}, \mathrm{Vi}_{\text {min }}=35 \mathrm{~V}, \mathrm{Vi}_{\text {max }}=45 \mathrm{~V} \mathrm{~V}_{\mathrm{z}}=20 \mathrm{~V}, \mathrm{r}_{\mathrm{z}}=5$ ohms $\mathrm{I}_{\mathrm{Lmin}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{L} \max }$ $=100 \mathrm{~mA} \mathrm{I}_{\mathrm{zmin}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{zmax}}=400 \mathrm{~mA}$. Find $P_{z \max }$ and load resistance.
5. (a) Show that in Hybrid $-\pi$ model, the diffusion capacitance is proportional to the emitter bias current.
(b) What is the frequency range to consider Giacolletto model of a transistor at high frequencies? What is the significance of f_{T} in discussing the frequency range of a transistor at high frequencies?
[8+8]
6. (a) For a single stage transistor amplifier, $R_{S}=10 \mathrm{~K}$ and $R_{L}=10 \mathrm{~K}$. The hparameter values are $h_{f c}=-51, h_{i c}=1.1 \mathrm{~K} \Omega, h_{r c} \approx 1, h_{o c}=25 \mu \mathrm{~A} / \mathrm{V}$ Find $A_{I}, A_{V}, A_{V S}, R_{i}$, and R_{o} for the CC transistor configuration.
(b) For a single stage transistor amplifier, $R_{S}=1 \mathrm{~K} \Omega$, and $R_{L}=10 \mathrm{~K}$ The h-parameter values are $h_{f e}=50, h_{i e}=1.1 \mathrm{~K} \Omega, h_{r e}=2.5 \times 10^{-4}, h_{o e}=25 \mu \mathrm{~A} / \mathrm{V}$. Find $A_{I}, A_{V}, A_{V S}, R_{i}$, and R_{o} for the CE transistor configuration.
7. Draw the circuit diagram of a class-B tuned amplifier. Explain its operation with neat waveforms. Also derive the expression for percentage efficiency and maximum power dissipation.
8. (a) Draw the circuit of class -A series fed power amplifier and derive the expression for output power P_{o}.
[10]
(b) Draw and discuss the operation of Class - C power amplifier.
