R07

Set No. 2

II B.Tech II Semester Examinations, December 2010 SEMICONDUCTOR DEVICES AND CIRCUITS Mechatronics

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain how n-type and p-type semi-conductors are formed? Explain the concept of hole.
 - (b) The leakage current in pn junction Germanium diode is $10~\mu A$ at room temperature $300^{0}K$. Calculate the change in temperature required so that the leakage current may rise to $40~\mu A$. [8+8]
- 2. (a) Explain the following regions of JFET.
 - i. Ohmic region
 - ii. Cutoff region
 - iii. Pinchoff region
 - (b) Show that for small values of V_{GS} compared with V_P , the drain current is given approximately by $I_D = I_{DSS} + g_m V_{GS}$. [9+7]
- 3. (a) Define the following
 - i. Kinetic Energy
 - ii. Electron volt
 - iii. Electric Intensity
 - iv. Current density of conductor
 - (b) Explain about anode system used in a Cathode Ray Tube with a neat diagram. [10+6]
- 4. (a) Draw the equivalent circuit of current amplifier with current shunt feedback and derive the expression for the
 - i. input resistance
 - ii. output resistance
 - (b) An amplifier has an open loop gain of 1000 and a feed back ratio 0.04. If the open loop gain changes by 10% due to temperature, find the percentage change in gain of the amplifier with feedback. [4+12]
- 5. (a) A colpitts oscillator is designed with $C_2 = 100$ pf and $C_1 = 7500$ pf. The inductance is variable. Determine apparent range of inductance value if apparent frequency of oscillation is to vary between 950 and 2050 KHz.
 - (b) Draw the circuit diagram of FET colpitts oscillator and explain its working. Derive the expression for frequency of oscillator and condition for starting of oscillator. [8+8]

R07

Set No. 2

6. (a) Write a short note on base spreading resistance?

- (b) Explain the analysis of a CE transistor amplifier circuit using simplified hybrid parameters. [6+10]
- 7. (a) Draw the circuit diagram of CLC filter and explain its operation.
 - (b) Prove that the ripple factor of LC filter is $r = \frac{1}{6\sqrt{2}\omega^2 LC} \eqno(8+8)$

8. (a) Discuss the advantages and disadvantages of R-C coupled transistor amplifers. What is the role of coupling capacitor in determining the frequency response.

(b) Derive the expression for gain-bandwidth product of the amplifer and show that the gain-bandwidth product is constant. [8+8]

R07

Set No. 4

II B.Tech II Semester Examinations, December 2010 SEMICONDUCTOR DEVICES AND CIRCUITS Mechatronics

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Draw the circuit diagram of center tapped Full Wave Rectifier and explain its operation with input, output waveforms.
 - (b) Derive the following center tapped Full Wave Rectifier parameters.
 - i. DC Voltage

Code No: 07A41401

- ii. RMS Voltage
- iii. Ripple factor
- iv. Efficiency.

[8+8]

- 2. (a) Explain the input and output characteristics of a transistor in common emitter configuration
 - (b) Define current amplification factors α and γ . Prove that the relation between α and γ is $\gamma = \frac{1}{1-\alpha}$ [8+8]
- 3. (a) Explain the following terms:
 - i. Doping
 - ii. Donor
 - iii. Acceptor
 - iv. Concentration
 - (b) What are semiconductors? Differentiate intrinsic and extrinsic semiconductors.

[8+8]

- 4. (a) Explain the function of the following in CRO:
 - i. Horizontal Amplifier
 - ii. Vertical Amplifier
 - (b) Explain about deflection system used in a Cathode Ray Tube with a neat diagram. Also explain about the screen of CRO. [8+8]
- 5. (a) Assume that a silicon transistor with $\beta=10$ $V_{BE}=0.6$ V, $V_{CC}=22.5$ V and $R_{C}=5.6$ K is used in figure 5. It is desired to establish a Q point at $V_{CE}=12$ V, $I_{C}=1.5$ mA and a stability factor S \leq 3. Find R_{e} , R_{1} , and R_{2} .
 - (b) Explain diode bias compensation method.

[12+4]

R07

Set No. 4

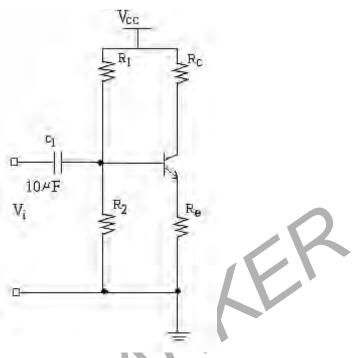


Figure 5

- 6. (a) Describe the construction of phase shift oscillator and explain its working.
 - (b) An Hartley oscillator is design with $L_1=20\mu$ H $L_2=2\text{mH}$ and a variable capacitance. Determine the range of capacitance value if the frequency is varied between 1050KHz and 2150 KHz. [8+8]
- 7. (a) Draw the small signal equivalent circuit of common Drain amplifier and derive the expression for voltage gain.
 - (b) Draw the circuit of RC-coupled amplifier using transistor and draw the frequency response characteristic. [10+6]
- 8. (a) Explain the concept of feedback as applied to electronic amplifier circuits. What are the advantages and disadvantages of positive and negative feedback?
 - (b) With the help of a general block diagram explain the term feed back.
 - (c) Define the following terms in connection with feedback.
 - i. Closed loop voltage gain
 - ii. Open loop voltage gain

[8+4+4]

R07

Set No. 1

II B.Tech II Semester Examinations, December 2010 SEMICONDUCTOR DEVICES AND CIRCUITS Mechatronics

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Foa a Germanium diode, the reverse saturation current at room temperature 300^{0} is 2 μ A. Calculate
 - i. Forward dynamic resistance at forward voltage of 0.25 volts
 - ii. Reverse dynamic resistance at a reverse voltage of 0.25 volts
 - (b) Calculate the ratio of current for forward bias voltage of $0.05~\rm V$ to the current for the same magnitude of the reverse bias. Assume the pn junctiion diode is Si. [8+8]
- 2. (a) Compare CE, CB and CC configurations
 - (b) Explain the merits and de-merits of FET'S over BJT'S. [8+8]
- 3. (a) Draw the circuit of Half wave rectifier with resistance load and explain the working of it. Show that the ripple factor for the above circuit is 1.21.
 - (b) Discuss the need of filters in rectifier circuits. [10+6]
- 4. (a) Define the term potential and derive the relation between electric field intensity and potential for
 - i. Uniform electric field
 - ii. Non uniform electric field
 - (b) Explain the motion of electrons in
 - i. Electric fields
 - ii. magnetic fields.

[6+10]

- 5. (a) What is the effect of employing negative feedback on voltage and current gains of practical voltage amplifier?
 - (b) For the given circuit (figure 5b), calculate R_m , A_{vf} and R_{if} . The transistor h-parameters are h_{ie} =2K Ω , h_{fe} = 100. Neglect h_{oe} and h_{re} . [4+12]

R07

Set No. 1

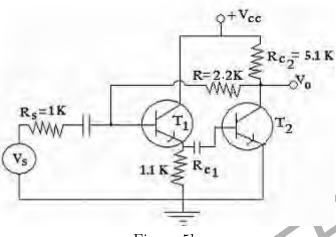


Figure 5b

- 6. (a) Draw the circuit of a common drain amplifier. Draw its high frequency small signal equivalent circuit.
 - (b) Derive expressions for the high frequency voltage gain, input admittance, input capacitance and output admittance. [6+10]
- 7. (a) Draw the circuit of R-C phase shift oscillator circuit using JFET as the active device and discuss the nature of feed back used in the feedback path.
 - (b) In the R-C phase shift oscillator, discuss the passive part of the circuit that is responsible to get the 180^{0} phase shift.
 - (c) Calculate the value of 'C' in the frequency-determining network of a FET RC phase shift oscillator having $R=2.5~\mathrm{K}\Omega$; assuming frequency of oscillation f = 1.625 KHZ. [6+5+5]
- 8. (a) Explain the need and significance of biasing of transistor (BJT) circuits. Discuss different types of bias arrangements used in Transistor amplifier circuits.
 - (b) Define the stability factors, S' and S''. [10+6]

R07

Set No. 3

II B.Tech II Semester Examinations, December 2010 SEMICONDUCTOR DEVICES AND CIRCUITS Mechatronics

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Draw the circuit diagram of Half Wave Rectifier and explain its operation with input, output waveforms.
 - (b) Derive the following Half Wave Rectifier parameters.
 - i. DC Voltage
 - ii. RMS Voltage
 - iii. Ripple factor
 - iv. Efficiency.

[8+8]

- 2. Determine Conductivity and Resistivity of following intrinsic semiconductors at room temperature $300^{0}K$.
 - (a) Germanium:

Code No: 07A41401

Intrinsic concentration $(n_i) = 2.5 \times 10^{13} cm^{-3}$. Electron mobility $(\mu_n) = 3800 cm^2/v - sec$ Hole mobility $(\mu_p) = 1800 cm^2/v$ -sec

(b) Silicon:

Intrinsic concentration $(n_i) = 1.5 \times 10^{10} cm^{-3}$. Electron mobility $(\mu_n) = 1300 cm^2/v - sec$ Hole mobility $(\mu_p) = 500 cm^2/v - sec$

[8+8]

- (a) An electron is emitted from a thermionic cathode with a negligible initial velocity and is accelerated by a potential of 1000 Volts. Calculate final velocity of the particle.
 - (b) Repeat the above problem for the case of a charged particle having mass equal to 500 times of an electron and a charge same as of an electron that has been introduced into the electric field with an initial velocity of 10⁵ m/sec. [8+8]
- 4. (a) Draw the equivalent circuit for one stage RC coupled CE amplifier valid for low frequency range.
 - (b) Derive expression for current gain A_{IL} and Voltage gain A_{VL} valid for low frequency range. [6+10]
- 5. (a) Compare n channel JFET with p channel JFET.
 - (b) Draw the n channel depletion MOSFET construction and explain its operation. [6+10]

R07

Set No. 3

6. (a) State three fundamental assumptions which are made in order that the expression $A_f = A/(1 + A\beta)$ be satisfed exactly.

- (b) An Amplifier has a value of $R_n = 4.2K\Omega$, $A_V = 220$ and $\beta = 0.01$. Determine the value of input resistance of the feedback amplifier.
- (c) The amplifer in part (a) had cut-off frequencies f_1 =1.5KHZ and f_2 =501.5 KHZ before the feedback path was added. What are the new cut-off frequencies for the circuit? [6+4+6]
- 7. (a) Draw the circuit diagram of a general oscillator and obtain the maintenance condition and the frequency of an oscillator
 - (b) An Hartley oscillator is design with $L_1 = 20\mu\text{H}$ $L_2 = 2\text{mH}$ and a variable capacitance. Determine the range of capacitance value if the frequency is varied between 950KHz and 2050 KHz. [8+8]
- 8. (a) Define stability factor and derive an expression for the stability factor for collector to base bias.
 - (b) A germanium transistor is used in the self-biasing arrangement of figure 8b with V_{cc} =16V and R_c = 1.5K Ω . The quiescent point is chosen to be V_{CE} = 8V and I_c = 4mA. A stability factor S=12 is desired. If β =50 find R_1 , R_2 and R_e .

[6+10]

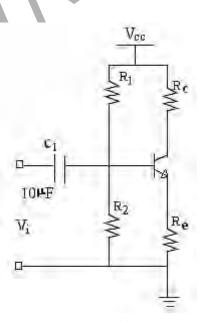


Figure 8b