II B.Tech II Semester Examinations,November 2010 MATHEMATICS - III Metallurgy And Material Technology

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Verify Cauchy's integral theorem for $f(z)=z^{3}$ taken over the boundary of the rectangle with vertices at $-1,1,1+\mathrm{i},-1+\mathrm{i}$.
(b) Use Cauchy's integral formula to evaluate $\oint_{c} \frac{\cos z}{(z-\pi i)^{2}} d z$ where o is the circle and $|z|=5$
2. (a) Prove that $\int_{0}^{1} \frac{x^{m-1}(1-x)^{n-1}}{(b+c x)^{m+n}} d x=\frac{\beta(m, n)}{(b+c)^{m} b^{n}}$.
(b) Show that $\int_{0}^{\infty} x^{m} e^{-x^{n}} d x=\frac{\Gamma(m)}{n^{m}},(\mathrm{~m}, \mathrm{n}>0)$.
3. (a) Represent each of the following in the exponential form $r e^{i \theta}$
i. $3+4 \mathrm{i}$
ii. -4 i
iii. -2
(b) Separate the real and imaginary parts of $\exp \left(i z^{2}\right)$
4. (a) Find the Laurent series of $\frac{7 z-2}{(z+1) z(z-2)}$ in the annulas $1<|z+1|<3$.
(b) Expand the Laurent series of $\frac{z^{2}-1}{(z+2)(z+3)}$, for $|z|>3$.
5. (a) Find all values of k, such that $f(z)=e^{x}[\cos k y+i \sin k y]$ is analytic.
(b) If $\mathrm{f}(\mathrm{z})$ is an analytic function of z prove that $\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \log |f(z)|=0$
6. Evaluate $\int_{C} \frac{f^{\prime}(z)}{f(z)} d z$ by using argument principle where C is a simple closed curve C and $f(z)=z^{5}-8 z^{2} i+2 z-3+5 i$.
7. Using the method of contour integration, prove that $\int_{0}^{\infty} \frac{d x}{x^{6}+1}=\frac{\pi}{3}$
8. Discuss about the conformal mapping of $\mathrm{w}=\tan \mathrm{z}$.

II B.Tech II Semester Examinations,November 2010 MATHEMATICS - III Metallurgy And Material Technology

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. Determine and classify all singularities of the given functions.
(a) $\frac{1}{z-z^{3}}$
(b) $\frac{z^{4}}{1+z^{4}}$
(c) $\cot \frac{1}{z}-\frac{1}{z}$
(d) $\frac{1-e^{2 z}}{z^{4}}$
(e) $\frac{1-\cos z}{z}$
(f) $e^{z /(z-2)}$
2. (a) If $w=u+i v=z^{3}$, prove that $u=c_{1}$ and $v=c_{2}$ cut each other orthogonally where C_{1} and C_{2} are constants.
(b) Find the analytic function whose imaginary part is $\mathrm{e}^{-\mathrm{x}}[\mathrm{x} \cos \mathrm{y}+\mathrm{y} \sin \mathrm{y}]$. $[8+8]$
3. Prove that the all roots of $\mathrm{z}^{5}+\mathrm{z}$-16 lie between the circles $|z|=1$ and $|z|=2$. [16]
4. (a) Determine all values and the principal value of
i. $\log 3 i$
ii. $\log (\sqrt{3}-i)$
(b) Find the real and imaginary parts of $\log \cos (x+i y)$
5. (a) Integrate $f(z)=x^{2}+$ ixy from $A(1,1)$ to $B(2,4)$ along the curve $x=t, y=t^{2}$.
(b) If $f(z)$ is analytic in a region R, P and Q are two points in R, then prove that $\int_{P}^{Q} f(z) d z$ is independent of the path joining P and Q . $\quad[8+8]$
6. (a) Find the image of the infinite strip $0<y<\frac{1}{2}$ under the transformation $\mathrm{w}=\frac{1}{z}$
(b) Show that the image of the hyperbola $\mathrm{x}^{2}-\mathrm{y}^{2}=1$ under the transformation $\mathrm{w}=\frac{1}{z}$ is the lemniscate $\mathrm{p}^{2}=\cos 2 \phi$.
7. (a) Prove that Rodrigue's formula $P_{n}(x)=\frac{1}{2^{n} n!} \frac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
(b) Express $f(x)=x^{3}-5 x^{2}+x+2$ in terms of Legender's polynomials. $[10+6]$
8. Evaluate $\int_{0}^{\infty} \frac{d x}{x^{4}+a^{4}}$

II B.Tech II Semester Examinations,November 2010 MATHEMATICS - III Metallurgy And Material Technology

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Determine the residues of the function
$f(z)=\frac{e^{z}}{z^{2}+\pi^{2}}$ at the poles.
(b) Find the residues of the function $f(z)=\frac{1-e^{2 z}}{z^{4}}$ at the poles.

$$
[8+8]
$$

2. (a) If $\tan (x+i y)=A+i B$ show that $A^{2}+B^{2}+2 A \cot 2 x=1$.
(b) Find the principal value of $(2 \mathrm{i})^{2 i}$
3. State Rouche's theorem and use it to find the number of zeros of the polynomial $z^{8}-4 z^{5}+z^{2}-1$ that lie inside the circle $|z|=1$.

(b) If $\mathrm{w}=\varphi+\mathrm{i} \psi$ represents the complex potential for an electric field and

$$
\begin{equation*}
=x^{2}-y^{2}+\frac{x}{x^{2}+y^{2}} \text { find the function } \varphi \text {. } \tag{6+10}
\end{equation*}
$$

5. (a) Evaluate $\int_{0}^{1+i}\left(x^{2}-i y\right) d z$ along the path

ii. $y=x^{2}$
(b) Use Cauchy's integral formula to evaluate $\oint_{c} \frac{\sin ^{2} z}{\left(z-\frac{\pi}{6}\right)^{3}} d z$ where c is the circle $|z|=1$
6. (a) Prove that the transformation $\mathrm{w}=\frac{1}{z}$ maps every straight line or circle on to a circle or straight line.
(b) Define bilinear transformation. Prove that the bilinear transformation is conformal.
7. (a) Determine the poles and the corresponding residues of $f(z)=\frac{1}{\left(z^{2}+4\right)^{2}}$ and $f(z)$ $=\frac{z+1}{z^{2}(z-2)}$
(b) Expand $\frac{e^{2 z}}{(z-1)^{4}}$ in powers of ($z-1$).
8. (a) Prove that $(2 n+1) P_{n}(x)=P_{n+1}^{1}(x)+P_{n-1}^{1}(x)$
(b) Prove that $\int_{-1}^{1} x^{2} P_{n+1}(x) P_{n-1}(x) d x=\frac{2 n(n+1)}{(2 n-1)(2 n+1)(2 n+3)}$

II B.Tech II Semester Examinations,November 2010 MATHEMATICS - III Metallurgy And Material Technology

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Separate the real and imaginary parts of
i. $\operatorname{cosec} z$
ii. $\exp \left(z^{2}\right)$
(b) Find all solutions of : $\exp (2 z-1)=1+i$.
2. (a) Find whether the function $f(z)$ is analytic or not
i. $f(z)=\cosh z$,
ii. $f(z)=2 x y+i\left(x^{2}-y^{2}\right)$
(b) Show that the function $\mathrm{u}=\frac{1}{2} \log \left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$ is harmonic and find its harmonic conjugate function.
3. (a) Determine the bilinear transformation that maps the points (1-2i,2+i,2 $+3 i)$ into the points $(2+\mathrm{i}, 1+3 \mathrm{i}, 4)$.
(b) Find the bilinear transformation which maps the points (-i, 0, i) into the points $(-1,1,1)$ respectiyely.

$$
[8+8]
$$

4. Evaluate $\oint \frac{f^{\prime}(z)}{f(z)} d z$ where C is simple closed curve, where $\mathrm{f}(\mathrm{z})=\cos \pi \mathrm{z}, \mathrm{c}:|z|=\pi$
5. Evaluate $\int_{0}^{\infty} \frac{\cos x}{\left(1+x^{2}\right)^{2}} d x$
6. (a) Show that when $|z+1|<1, z^{-2}=1+\sum_{n=1}^{\infty}(n+1) z^{n}$
(b) Find the poles and the corresponding residues of the function $\mathrm{f}(\mathrm{z})=\frac{1}{(z+1)(z+3)}[8+8]$
7. (a) Determine $\mathrm{F}(2), \mathrm{F}(4), \mathrm{F}(-3 \mathrm{i}), \mathrm{F}^{\prime}(\mathrm{i}), \mathrm{F}^{\prime \prime}(-2 \mathrm{i})$, if $\mathrm{F}(\alpha)=\int_{c} \frac{5 z^{2}-4 z+3}{z-\alpha} d z$ where c is the ellipse $16 \mathrm{x}^{2}+9 \mathrm{y}^{2}=144$.
(b) Use Cauchy's integral formula to evaluate $\oint_{c} \frac{z+4}{z^{2}+2 z+5} d z$ where C is the circle $|z+1|=1$
8. (a) Show that $\mathrm{P}_{n}(\mathrm{x})$ is the co-efficient h^{n} in the expansion in ascending powers of $\left(1-2 x h+h^{2}\right)^{-1 / 2}$
(b) Show that
i. $\mathrm{P}_{n}(1)=1$
ii. $\mathrm{P}_{n}(-\mathrm{x})=(-1)^{n} \mathrm{P}_{n}(\mathrm{x})$

Hence deduce that $\mathrm{P}_{n}(-1)=(-1)^{n}$.

