R07

Set No. 2

II B.Tech II Semester Examinations, December 2010 CONTROL SYSTEMS

Common to E.COMP.E, ETM, E.CONT.E, ECE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) Explain temperature control system with neat block diagram.
 - (b) Human being is an example of closed loop system. Justify your answer. [8+8]
- 2. (a) Obtain the state model of the system shown in figure 2a.

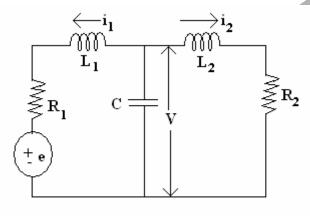


Figure 2a

Consider the state variables as i_1 , i_2 , v

(b) Obtain the state model of a field controlled motor?

[8+8]

- 3. (a) Define the following terms:
 - i. Steady-state error
 - ii. Settling time
 - iii. Peak overshoot
 - iv. type and order of a control system.
 - (b) Sketch the transient response of a second order system and derive the expression for rise time and peak overshoot? [8+8]
- 4. (a) Explain the significance of Bandwidth in the design of linear control systems.
 - (b) Show that the error contributed by a simple pole in the Bode magnitude plot is -3 dB at corner frequency.
 - (c) The asymptotic plot of a system is shown in figure 4c

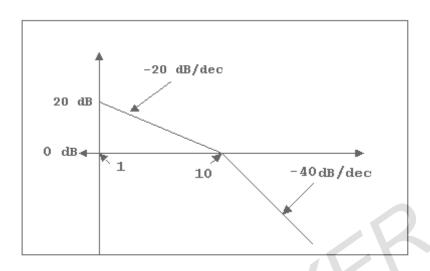


Figure 4c

Find the loop transfer function of the system.

[4+4+8]

- 5. (a) Distinguish between polar plots & Nyquist plots.
 - (b) Discuss the effect of adding poles & zeros to G(s)H(s) on the shape of Nyquist plots [6+10]
- 6. (a) Define the following terms
 - i. Stable system
 - ii. Critically stable system
 - iii. Conditionally stable system.
 - (b) For the system having characteristic equation $2S^4 + 4S^2 + 1 = 0$, find the following
 - i. the no. of roots in the left half of s-plane
 - ii. the no. of roots in the right half of s-plane
 - iii. the no. of roots on the imaginary axis.

[6+10]

Use the RH stability criterion

7. (a) Reduce the given block diagram (figure 7a) and hence obtain the transfer function $\frac{C(s)}{R(s)}$

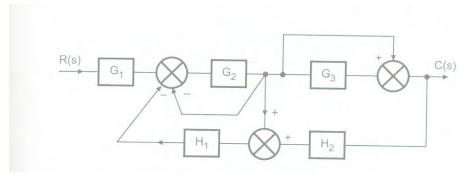


Figure 7a

R07

Set No. 2

(b) Explain the need of Mason's gain formula for any system reduction. [10+6]

8. For the unity feed back control system forward path transfer function G(S) = K/S (S+4) (S+20). Design a lag-lead compensator so that PM \geq 40 and steady state error for unit ramp input \leq 0.04 rad. [16]

Set No. 4

II B.Tech II Semester Examinations, December 2010 CONTROL SYSTEMS

Common to E.COMP.E, ETM, E.CONT.E, ECE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. (a) "Addition of a non zero pole to a transfer function results in further rotation of the polar plot by -90° as $\omega \to \infty$ ". Justify with the help of an example
 - (b) A system is given by $G(s) = \frac{1}{s^2(s+1)(s+10)}$. Determine the magnitude & phase angle at zero & ∞ frequencies. Hence sketch the polar plot. [10+6]
- 2. (a) Define

Code No: 07A4EC03

- i. Bandwidth
- ii. Resonant peak
- (b) Explain how stability can be determined from Bode plots
- (c) Find resonant peak & resonant frequency given $\zeta = 0.5$. If the damping ratio is changed to 0.9 find resonant peak & resonant frequency. Comment on the result. [4+6+6]
- 3. (a) Explain the need of lead compensator and obtain the transfer function of lead-lag compensator.
 - (b) Expalin the signinificance of compansion?

[10+6]

- 4. (a) Explain the significance of generalized error series?
 - (b) For a system $G(s)H(s) = \frac{K}{s^2(s+2)(s+3)}$, find the value of K to limit the steady state error to 10 when the input to the system is r(t)=(1+10t+40)/2 t^2 .

[6+10]

5. (a) The signal flow graph shown in figure 5a has one forward path and two isolated loops. Determine the overall transfer function relating x_1 and x_2

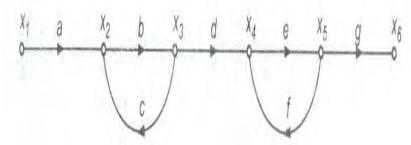


Figure 5a

- (b) Explain the differences between AC servomotor and DC servomotor. [9+7]
- 6. (a) Find a state model (phase variable form) for the system with transfer function. $\frac{Y(S)}{U(S)} = \frac{S+4}{S^3+6S^2+11S+6}$

Set No. 4

(b) A feedback system is represented by a signal flow graph shown in figure 6b.

- i. Construct a state model of the system
- ii. Diagnotize the Coefficient matrix A of the state model. [6+10]

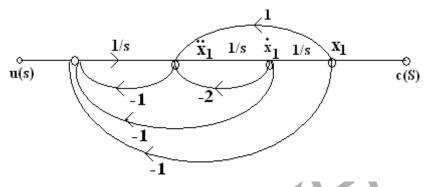


Figure 6b

7. (a) Explain sensitivity?

Code No: 07A4EC03

- (b) Determine the sensitivity of the closed loop system shown in figure 7(b)ii at $\omega=1$ rad/sec w.r.t
 - i. forward path transfer function
 - ii. feedback path transfer function

[6+10]

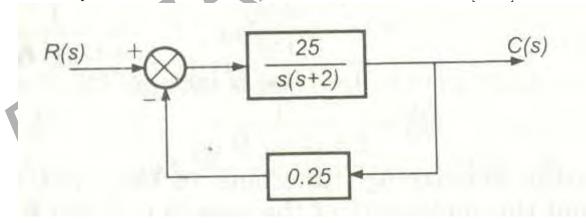


Figure 7(b)ii

- 8. (a) Show that that the break-away and break-in points ,if any, on the real axis for the root locus for $G(s)H(s) = \frac{KN(s)}{D(s)}$, where N(s) and D(s) are rational polynomials in S, can be obtained by solving the equation $\frac{dK}{ds} = 0$
 - (b) Check whether the points (-1+j) and (-3+j) lie on the root locus of a system given by $G(s)H(s) = \frac{K}{(s+1)(s+2)}$. Use the angle condition. [8+8]

Set No. 1

II B.Tech II Semester Examinations, December 2010 CONTROL SYSTEMS

Common to E.COMP.E, ETM, E.CONT.E, ECE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Define

Code No: 07A4EC03

- i. Minimum phase tf
- ii. Non minimum phase tf
- (b) Enlist the steps for the construction of Bode plots
- (c) Explain the procedure for determination of transfer function from Bode plots. [4+4+8]
- 2. (a) Discuss the properties of state transition matrix.
 - (b) Determine the canonical state model of system, whose transfer function is $T(s) = \frac{2(s+5)}{(s+2)(s+3)(s+4)}$.
 - (c) What are advantages of state space analysis compared to transfer function analysis? [6+6+4]
- 3. Explain the following terms:
 - (a) Impulse response
 - (b) Rotational mechanical systems
 - (c) Translational systems

(d) Sensitivity. [16]

- 4. (a) What is compensation? What are the different types of compensators?
 - (b) What is lag-lead compensator, obtain the transfer function of lag-lead compensator and draw it's pole-zero plot?
 - (c) Explain the different steps to be followed for the design of lag lead compensator using Bode plot? [3+3+10]
- 5. Sketch the root locus plot of a unity feed back system whose open loop T.F is $G(s) = \frac{K(s+9)}{s(s^2+4s+11)}$. [16]
- 6. (a) State how the type of a control system is determined? How it effects the steady-state error of the system?
 - (b) A unity feed-back system has $G(s) = \frac{40(s+2)}{s(s+1)(s+4)}$. Determine
 - i. Type of the system
 - ii. All the error coefficient

R07

Set No. 1

iii. Error for ramp input with magnitude.

[6+10]

- 7. (a) Compare the Nyquist stability method with other methods & hence bring out the advantages of the Nyquist method.
 - (b) Relative stability analysis for open loop unstable cannot be carried out by Nyquist method. Why? [10+6]
- 8. (a) Reduce the given block diagram (figure 8a) and hence obtain the transfer function $\frac{C(s)}{R(s)}$

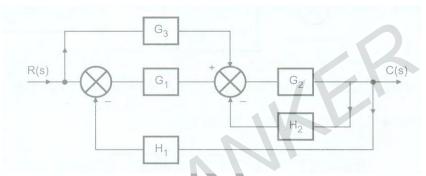


Figure 8a

(b) Explain synchro with neat sketch.

[10+6]

Set No. 3

II B.Tech II Semester Examinations, December 2010 CONTROL SYSTEMS

Common to E.COMP.E, ETM, E.CONT.E, ECE, EEE

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. The open loop T.F. of a control system is given by $G(s)H(s) = \frac{K}{s(s+6)(s^2+4s+13)}$ Sketch the root locus plot and determine
 - (a) the break-away points

Code No: 07A4EC03

- (b) The angle of departure from complex poles
- (c) the stability condition.

[5+5+6]

- 2. (a) How can you control the system dynamics by using feedback?
 - (b) What is a mathematical model of a physical system? Explain briefly. [8+8]
- 3. (a) Obtain the state model of the system whose transfer function is given as. $\frac{Y(s)}{V(s)} = \frac{10}{S^3 + 4S^2 + 2S + 1}$
 - (b) Consider the matrix A compute e^{At} ? [8+8] $A = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix}$
- 4. (a) What is compensation? What are the different types of compensators?
 - (b) What is a lead compensator, obtain the transfer function of lead compensator and draw pole-zero plot?
 - (c) Explain the different steps to be followed for the design of lead compensator using Bode plot? [3+3+10]
- 5. (a) Reduce the given block diagram (Figure 5a) and hence obtain the transfer function $\frac{C(s)}{R(s)}$

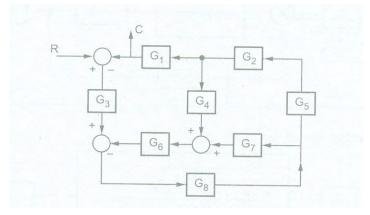


Figure 5a

(b) Explain the practical applications of servomotors.

[10+6]

Set No. 3

6. (a) Explain Nyquist stability criterion.

- (b) With the help of Nyquist plot assess the stability of a system $G(s) = \frac{3}{s(s+1)(s+2)}$ What happens to stability if the numerator of the function is changed from 3 to 30? [6+10]
- 7. (a) What do you mean by a critically stable system? How do you find out whether a given system is critically stable from Bode plots?
 - (b) Define

Code No: 07A4EC03

- i. Gain Margin
- ii. PhaseMargin
- (c) Sketch Bode phase angle plot of a system $G(s) = \frac{1}{(1+s)(1+2s)}$.

[4+4+8]

8. (a) Explain error constants K_p , K_v , K_a for type-1 system?

(b) A unity feed back system has an open loop transfer function $G(s) = \frac{25}{s(s+8)}$. Determine its damping ratio, peak overshoot and time required to reach the peak output. Now a derivative component having T.F. of s/10 is introduced in the system. Discuss its effect on the values obtained above? [3+13]

