III B.Tech I Semester Examinations,November 2010 DIGITAL COMMUNICATIONS

Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Compare FSK \& PSK systems.
(b) Compare different m-ary techniques.

$$
[8+8]
$$

2. (a) What is the entropy of X, where X represents the outcome of single roll of a fair die?
(b) Prove that the entropy for a discrete source is a maximum when the output symbols are equally probable.
3. A convolutional encoder has a single shift register with two stages, $(\mathrm{K}=3)$ three modulo-2 adders and an output multiplexer. The generator sequence s of the encoder are as follows. $\mathrm{g}^{(1)}=(0,1,1) ; \mathrm{g}^{(2)}=(1,0,1), \mathrm{g}^{(3)}=(1,1,1)$. Draw the block diagram of the encoder. Construct the state diagram of the above encoder. [16]
4. Binary data is transmitted over an RF Band pass channel with a usable band width of 10 MHz at a rate of $4.8 \times 10^{6} \mathrm{bits} / \mathrm{sec}$ using an ASK signaling method. The carrior amplitude at the receiver antenna is 1 mv and the noise power spectral density at the receiver input is $10^{-5} / \mathrm{W} / \mathrm{Hz}$.
(a) Find the error probability of a coherent receiver?
(b) Find the error probability of a non-coherent receiver?
5. Explain the Shannon-fano coding algorithm using an example.
6. Explain with neat diagram adaptive Delta modulation transmitter and receiver.
7. The threshold value of the input signal power to noise ratio $(\mathrm{S} / \mathrm{N})_{i}$ in PCM system is defined as the value of $(\mathrm{S} / \mathrm{N})_{i}$ for which the value of $(\mathrm{S} / \mathrm{N})_{0}$ is 1 dB below its maximum:
(a) Show that the threshold occurs when $P e \approx\left[\frac{1}{16\left(2^{2 N}\right)}\right]$
(b) Plot P_{e} versus N , for $\mathrm{N}=2,4,6$ and 8
(c) Sketch the threshold value of $(S / N)_{i}$ versus N for which $N=2,4,6$ and 8. [Assume that a PSK signalling scheme is used]
$[6+5+5]$
8. The polynomial $x^{15}+1$ when factored gives $\mathrm{x}^{15}+1=\left(\mathrm{x}^{4}+\mathrm{x}^{3}+1\right)\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{4}+\mathrm{x}+1\right)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)(\mathrm{x}+1)$
(a) Construct a systematic $(15,2)$ code using the generator polynomial $g(x)=\left(x^{4}+x^{3}+x^{2}+x+1\right)\left(x^{4}+x+1\right)\left(x^{4}+x^{3}+1\right)(x+1)$
(b) List all the code words.

III B.Tech I Semester Examinations,November 2010 DIGITAL COMMUNICATIONS

Common to Electronics And Telematics, Electronics And Communication Engineering
Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Define the following
(a) information
(b) entropy
2. Derive probability of error for
(a) ASK and
(b) PSK systems.
3. A DMS X has 4 symbols $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ with $\mathrm{p}\left(\mathrm{x}_{1}\right)=1 / 2, \mathrm{p}\left(\mathrm{x}_{2}\right)=1 / 4$, $\mathrm{p}\left(\mathrm{x}_{3}\right)=1 / 8=\mathrm{p}\left(\mathrm{x}_{4}\right)$.
(a) construct Shannon fano code
(b) repeat for the Huffman code and eompare the results.
4. Construct all the possible systematic code words for $(15,5)$ cyclic code with the following generator polynomial $g(x)=x^{10}+x^{8}+x^{5}+x^{4}+x^{2}+x+1$. Derive the encoder circuit for this.
5. Explain PSK \&DPSK. Compare both.
6. Explain:
(a) Channel noise
(b) Quantisation noise in DM \& derive expression for them?
7. A convolutional encoder has a single shift register with two stages, $(\mathrm{K}=3)$ three modulo- 2 adders and an output multiplexer. The generator sequence s of the encoder are as follows.
$\mathrm{g}^{(1)}=(0,1,1) ; \mathrm{g}^{(2)}=(1,0,1), \mathrm{g}^{(3)}=(1,1,1)$. Draw the block diagram of the encoder. Construct the trellis diagram.
8. A signal $\mathrm{m}(\mathrm{t})$ Band limited to 4 kHz is sampled at twice the Nyquist rate \& its samples transmitting by PCM. An output SNR of 47 dB is required:
(a) Find N and minimum value of $\mathrm{Si} / \mathrm{Ni}$ of operation is to be above Threshold
(b) Calculate minimum system Band width required and find signalling rate needed to achieve the given output SNR.
[8+8]

III B.Tech I Semester Examinations,November 2010 DIGITAL COMMUNICATIONS
 Common to Electronics And Telematics, Electronics And Communication Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. Consider the binary symmetric channel. let P_{0} denote the probability of choosing binary symbol $\mathrm{X}_{0}=0$ and let $\mathrm{P}_{1}=1-\mathrm{P}_{0}$ denote the probability of choosing binary symbol $\mathrm{X}_{1}=1$. Let p denote the transition probability of the channel. Calculate the average mutual information between the channel input and channel output.[16]
2. (a) Show the geometrical representation of m-ary psk signals.
(b) Draw the block diagram of QPSK receiver.
3. Construct the state diagram for the following encoder. Starting with all zero state, trace the path that correspond to the message sequence 1011101. Given convolutional encoer has 3 shift registers with two stages, two modulo-2 adders and an output multiplexer. The generator sequences of the encoder are as follows.
$\mathrm{g}^{(1)}=(1,1,1,1) ; \mathrm{g}^{(2)}=(1,1,0,1)$.
4. A source emits one of four possible symbols during each signaling interval. The symbols occur with the probabilities. $\mathrm{p} 1=0.4, \mathrm{p} 2=0.3, \mathrm{p} 3=0.2, \mathrm{p} 4=0.1$. Find the information gained by observing the source emitting each of these symbols. [16]
5. (a) Draw the Block diagram of DPCM system.
(b) A voice frequency signal band limited to 3 KHz is transmitted with the use of the DM system. The prf is 30,000 pulses/second and step size is 40 mV . Determine the maximum permissible speech signal amplitude to avoid error.
6. The polynomial $x^{15}+1$ when factored gives $\mathrm{x}^{15}+1=\left(\mathrm{x}^{4}+\mathrm{x}^{3}+1\right)\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{4}+\mathrm{x}+1\right)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)(\mathrm{x}+1)$
(a) Construct a systematic $(15,5)$ code using the generator polynomial $\mathrm{g}(\mathrm{x})=\left(\mathrm{x}^{4}+\mathrm{x}^{3}+\mathrm{x}^{2}+\mathrm{x}+1\right)\left(\mathrm{x}^{4}+\mathrm{x}+1\right)\left(\mathrm{x}^{2}+\mathrm{x}+1\right)$
(b) What is the minimum distance of the code?
(c) How many random errors per code word can be corrected?
7. A satisfically independent sequence of equiprobable binary digits is transmitted over a channel having finite Band width using rectangular signalling waveform is taken. The bit rate is ' r_{b} ' and the channel noise has a PSD Gn(f) given by $\mathrm{Gn}(\mathrm{f})=\mathrm{Go}\left[1+\left(f / f_{1}\right)^{2}\right]^{-1}$. Find the transfor function of the optimum receiver and calculate the Pe .

Code No: 07A50405
R07

Set No. 1

8. For a DM system, signal sampled at 76 KHz and $\mathrm{A}_{\max }=4$
(a) Assuming that the signal is sinusoidal determine output signal power \& SNR.
(b) Determine the minimum transmission Band width? Derive the relations. [16]

III B.Tech I Semester Examinations,November 2010 DIGITAL COMMUNICATIONS
 Common to Electronics And Telematics, Electronics And Communication Engineering
 Time: 3 hours
 Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

$\star \star \star \star \star$

1. What is quantization error? How does it depend upon the step size? Suggest some methods to overcome the difficulties encountered depending on the modulating amplitude swing?
2. (a) A source emits one of 4 symbols $\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}$ with probabilities $1 / 3,1 \vee 6,1 / 4,1 / 4$ respectively. The successive symbols emitted by the source are statistically independent. Calculate the entropy of the source.
(b) Prove that the entropy for a discrete source is a maximum when the output symbols are equally probable.
3. For a $(6,3)$ systematic linear block code the three parity check bits c4, c5, c6 are formed from the following equations: $\mathrm{c}_{4}=\mathrm{d}_{1}$ (xor) $\mathrm{d}_{3} ; \mathrm{c}_{5}=\mathrm{d}_{1}$ (xor) d_{2} (xor) d_{3}; $c_{6}=d_{1}($ xor $) d_{2}$.
(a) Write down the generator matrix G
(b) suppose that the received word is 010111 . Decode this received word by finding the location of the error and the transmitted data bits. [8+8]
4. A convolutional encoder has two shift registers two modulo-2 adders and an output multiplexer. The generator sequences of the encoder are as follows:
$\mathrm{g}^{(1)} 4=(1,1,0) ; \mathrm{g}^{(2)}=(0,1,1)$. Draw the block diagram of the encoder. Construct the state diagram for the above encoder.
5. Write down the modulation waveforms for transmitting binary information over base band channels for the following schemes:
(a) ASK
(b) PSK
(c) FSK
(d) DPSK
6. Explain the operation of matched filter and derive $P_{e}=\frac{1}{2} \operatorname{erfc}\left[\sqrt{\frac{E b}{N o}}\right]$ for it ? [16]
7. Derive the channel capacity theorem for discrete channels.
8. Derive:
(a) $\frac{E\left\{x o^{2}(t)\right\}}{E\left\{n q^{2}(t)\right\}}=\frac{3}{8 \pi^{2}}\left(\frac{f_{s}}{f_{x}}\right)^{3}$

Code No: 07A50405
R07
(b) $\left(s / N_{q}\right)_{0}=\frac{\left(8 / 3 \pi^{2}\right)(f s / f x)^{3}}{1+\frac{6 P e f I_{2}^{12}}{\pi^{2} f_{f} f_{l}}}$

Where f_{S}^{1} - sampled interal
$\mathrm{f}_{1}, \mathrm{f}_{x} \rightarrow$ lower \& upper cut off frequencies.

