III B.Tech I Semester Examinations,November 2010 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Define String, Alphabet and Language.
(b) Prove that if $\delta(\mathrm{q}, \mathrm{x})=\delta(\mathrm{q}, \mathrm{y})$, then $\delta(\mathrm{q}, \mathrm{xz})=\delta(\mathrm{q}, \mathrm{yz})$ for all strings z in Σ^{+}.
(c) Construct DFA and NFA accepting the set of all strings with three consecutive 0's.
$[6 \neq 4+6]$
2. Describe, in the English language, the sets represented by the following regular expressions:
(a) $a(a+b) * a b$
(b) $a^{*} b+b^{*} a$
3. Design Turing Machine which recognizes the words of the form
$\mathrm{L}=\left\{0^{n} 1^{n} \mid \mathrm{n}>=1\right\}$
4. Convert the following Context Free Grammar to Greibach Normal Form
$\mathrm{G}=\{(\{\mathrm{S}, \mathrm{A}, \mathrm{B}\},\{\mathrm{a}, \mathrm{b}\}, \mathrm{P}, \mathrm{S})\}$
P is
$\mathrm{S} \rightarrow \mathrm{AB}$
$\mathrm{A} \rightarrow \mathrm{BS} \times \mathrm{a}$
$B \rightarrow S A / b$
5. Construct LR(0) items for the following grammar
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T}$
$\mathrm{T} \rightarrow \mathrm{T} * \mathrm{~F} \mid \mathrm{F}$
$\mathrm{F} \rightarrow(\mathrm{E}) \mid$ id
6. (a) Write the steps in minimization of FA.
(b) Construct a Moore machine to determine the residue mod 3 for each binary string treated as a binary interger.
7. Find the language generated by the following grammars.
(a) $\mathrm{S} \rightarrow 0 \mathrm{~S} 1|0 \mathrm{~A} 1, \mathrm{~A} \rightarrow 1 \mathrm{~A}| 1$
(b) $\mathrm{S} \rightarrow 0 \mathrm{~S} 1|0 \mathrm{~A}| 0|1 \mathrm{~B}| 1, \mathrm{~A} \rightarrow 0 \mathrm{~A}|0, \mathrm{~B} \rightarrow 1 \mathrm{~B}| 1$
8. (a) Convert the following Context Free Grammar to Push Down Automata
$\mathrm{S} \rightarrow 0 \mathrm{~A}$
$\mathrm{A} \rightarrow 0 \mathrm{ABC}|1 \mathrm{~B}| 0$
$B \rightarrow 1$

Code No: 07A50501

$$
\mathrm{C} \rightarrow 2
$$

(b) Verify the string 001112 is accepted by equivalent Push Down Automata[10+6]

III B.Tech I Semester Examinations,November 2010 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Differentiate Push Down Automata and Linear Bounded Automata
(b) Differentiate Context Free Languages and Context Sensitive Languages [8+8]
2. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata
(b) Convert the following Context Free Grammar to Push Down Automata $\mathrm{S} \rightarrow \mathrm{aAA}$ $\mathrm{A} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{a}$

$$
[8+8]
$$

3. (a) Find NFA which accepts the set of all strings over $\{0,1\}$ in which the number of occurances of 0 is divisible by 3 and the number of occurances of 1 is divisible by 2 .
(b) Draw the transition diagram for a NFA which accepts all strings with either two consecutive 0's or two consecutive 1 's.
(c) Differentiate NFA and DFA.

$$
[6+6+4]
$$

4. Let G be the grammer $\mathrm{S} \leftrightarrow \mathrm{aB}|\mathrm{bA}, \mathrm{A} \rightarrow \mathrm{a}| \mathrm{aS}|\mathrm{bAA}, \mathrm{B} \rightarrow \mathrm{b}| \mathrm{bS} \mid \mathrm{aBB}$ for the string aaablobbba Find a
(a) Left most derivation
(b) Right most derivation
(c) Parse Tree.
5. (a) Construct a Mealy machine which is equivalent to the Moore machine given in table.

Present State	Next State		Output
	$\mathrm{a}=0$	$\mathrm{a}=1$	
$\rightarrow q_{0}$	q_{3}	q_{1}	0
q_{1}	q_{1}	q_{2}	1
q_{2}	q_{2}	q_{3}	0
q_{3}	q_{3}	q_{0}	0

(b) Construct the corresponding Mealy machine to the Moore machine described by the transition table given.

Present Staate	Next State		Output
	$\mathrm{a}=0$	$\mathrm{a}=1$	
$\rightarrow q_{1}$	q_{1}	q_{2}	0
q_{2}	q_{1}	q_{3}	0
q_{3}	q_{1}	q_{3}	1

6. (a) Construct a FA recognizing $L(G)$, where G is the grammar $S \rightarrow a S|b A| b$ and $\mathrm{A} \rightarrow \mathrm{aA}|\mathrm{bS}| \mathrm{a}$
(b) Construct a DFA equivalent to the grammar $\mathrm{S} \rightarrow \mathrm{aS}|\mathrm{bS}| \mathrm{aA}, \mathrm{A} \rightarrow \mathrm{bB}, \mathrm{B} \rightarrow \mathrm{aC}$, $\mathrm{C} \rightarrow \varepsilon$
7. (a) Eliminate ε-productions from the grammar G given as
$\mathrm{A} \rightarrow \mathrm{aBb} \mid \mathrm{bBa}$
$\mathrm{B} \rightarrow \mathrm{aB}|\mathrm{bB}| \varepsilon$
(b) Convert the following grammar to Greibach Normal Form
$\mathrm{S} \rightarrow \mathrm{ABA}|\mathrm{AB}| \mathrm{BA}|\mathrm{AA}| \mathrm{B}$
$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{a}$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{b}$
[8+8]
8. Design Turing Machine which will recognize strings containing equal number of 0's and 1's

III B.Tech I Semester Examinations,November 2010 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) If $\mathrm{G}=(\{\mathrm{S}\},\{0,1\},\{\mathrm{S} \rightarrow 0 \mathrm{~S} 1, \mathrm{~S} \rightarrow \varepsilon\}$, S$)$, find $\mathrm{L}(\mathrm{G})$.
(b) If $\mathrm{G}=(\{\mathrm{S}\},\{\mathrm{a}\},\{\mathrm{S} \rightarrow \mathrm{SS}\}, \mathrm{S})$ find the language generated by G .
2. (a) Construct DFA and NFA accepting the set of all strings not containing 101 as a substring.
(b) Draw the transition diagram of a FA which accepts all strings of 1 's and 0 's in which both the number of 0 's and 1's are even.
(c) Define NFA with an example.

$$
[6+6+4]
$$

3. Find regular expressions representing the following sets
(a) The set of all stings over $\{0,1\}$ having at most one pair of 0 's or atmost of one pair 1's
(b) The set of all strings over $\{\mathrm{a}, \mathrm{b}\}$ in which the number of occurrences of a is devisible by
(c) The set of all strings over $\{a, b\}$ in which there are at least two occurrences of between any two occurrences of a.
(d) The set of all strings over $\{\mathrm{a}, \mathrm{b}\}$ with three consecutive b's
4. Design Turing Machine for $\mathrm{L}=\left\{0^{n} 1^{n} 0^{n} \mid \mathrm{n} \geq 1\right\}$
5. (a) Convert the following grammar to Greibach Normal Form
$\mathrm{S} \rightarrow \mathrm{SS}$
$\mathrm{S} \rightarrow 0 \mathrm{~S} 1 \mid 01$
(b) Show that grammar is ambiguous
$\mathrm{S} \rightarrow \mathrm{aSbS}|\mathrm{bSaS}| \varepsilon$
6. (a) Construct a NFA accepting ab, ba and use it to find a deterministic automation accepting the same set.
(b) $M=(\{q 1, q 2, q 3\},\{0,1\}, \delta q 1\{q 3\})$ is a NFA where δ is given by
$\delta(q 1,0)=\{q 2, q 3\}, \quad \delta(q 1,1)=\{q 1\}$
$\delta(q 2,0)=\{q 1, q 2\}, \delta(q 2,1)=\emptyset$
$\delta(q 3,0)=\{q 2\}, \delta(q 3,1)=\{q 1, q 2\}$
construct an equivalent DFA.
7. Design Push Down Automata for $\mathrm{L}=\left\{\mathrm{a}^{2 n} \mathrm{~b}^{n} \mid \mathrm{n} \geq 1\right\}$
8. Construct $\operatorname{LR}(0)$ items for the grammar given find it's equivalent DFA.
$\mathrm{Sl} \rightarrow \mathrm{S}$
$S \rightarrow$ AS | a
$\mathrm{A} \rightarrow \mathrm{aA} \mid \mathrm{b}$

III B.Tech I Semester Examinations,November 2010 FORMAL LANGUAGES AND AUTOMATA THEORY
 Computer Science And Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Write the steps in construction of minimum automaton.
(b) Write the applications of Finite Automata.
(c) Define NFA with ε-moves.
$[8+6+2]$
2. (a) Explain the procedure to Convert the Context Free Grammar to Push Down Automata
(b) Convert the following Context Free Grammar to Push Down Automata $\mathrm{S} \rightarrow \mathrm{aSbb} \mid$ aab
3. Write about the following
(a) Linear-Bounded Automata
(b) Context-Sensitive Language
(c) Decidability of PCP

$$
[5+5+6]
$$

4. What is Chomsky Normal Form? Convert the following Context Free Grammar to Chomsky Normal Form.
$S \rightarrow A a B / a a B$
$\mathrm{A} \rightarrow \varepsilon$
$\mathrm{B} \rightarrow \mathrm{bbA}$
5. (a) Construct a grammar G generating $\left\{\mathrm{xx} \mid \mathrm{x} \varepsilon\{\mathrm{a}, \mathrm{b}\}^{*}\right\}$
(b) Construct a grammar generating $\mathrm{L}=\left\{\mathrm{wcw}^{R} \mid \mathrm{w} \varepsilon\{\mathrm{a}, \mathrm{b}\}^{*}\right\} \quad[8+8]$
6. Design Turing Machine for $\mathrm{L}=\left\{\mathrm{a}^{n} \mathrm{~b}^{n} \mathrm{c}^{n} \mid \mathrm{n} \geq 1\right\}$
7. (a) Give NFA accepting the set of all strings of 0's and 1's such that the 10th symbol from the right is a 1 .
(b) Give DFA accepting the set of all strings with 3 consecutive 0's over the alphabet $\{0,1\}$.
(c) Define Finite Automata. Give an example.

$$
[6+6+4]
$$

8. (a) Give regular expression for representing the set L of strings in which every 0 is immediately followed by at least two 1's
(b) Construct a FA equivalent to the regular expression $(0+1) *(00+11)(0+1) *$ [8+8]
