R07

III B.Tech I Semester Examinations, November 2010 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering

Time: 3 hours

Code No: 07A50501

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Define String, Alphabet and Language.
 - (b) Prove that if $\delta(q, x) = \delta(q, y)$, then $\delta(q, xz) = \delta(q, yz)$ for all strings z in Σ^+ .
 - (c) Construct DFA and NFA accepting the set of all strings with three consecutive 0's. [6+4+6]
- 2. Describe, in the English language, the sets represented by the following regular expressions:

 (a) a(a+b)*ab (b) a*b + b*a 	
(b) $a^*b + b^*a$	[16]
Design Thuring Mashing which we shall	

- 3. Design Turing Machine which recognizes the words of the form $L = \{ 0^{n}1^{n} \mid n \ge 1 \}$ [16]
- 4. Convert the following Context Free Grammar to Greibach Normal Form $G = \{(\{S,A,B\},\{a,b\},P,S)\}$

$$P IS S \rightarrow AB A \rightarrow BS / a B \rightarrow SA / b$$
[16]

- 5. Construct LR(0) items for the following grammar $E \rightarrow E + T \mid T$ $T \rightarrow T * F \mid F$ $F \rightarrow (E) \mid id$
- 6. (a) Write the steps in minimization of FA.
 - (b) Construct a Moore machine to determine the residue mod 3 for each binary string treated as a binary interger. [8+8]
- 7. Find the language generated by the following grammars.
 - (a) $S \rightarrow 0S1 \mid 0A1, A \rightarrow 1A \mid 1$
 - (b) $S \rightarrow 0S1 \mid 0A \mid 0 \mid 1B \mid 1, A \rightarrow 0A \mid 0, B \rightarrow 1B \mid 1$ [8+8]
- 8. (a) Convert the following Context Free Grammar to Push Down Automata $S \rightarrow 0A$ $A \rightarrow 0ABC \mid 1B \mid 0$ $B \rightarrow 1$

www.firstranker.com

Code No: 07A50501 R07 Set No. 2

 $C \rightarrow 2$

(b) Verify the string 001112 is accepted by equivalent Push Down Automata[10+6]

R07

III B.Tech I Semester Examinations, November 2010 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering

Time: 3 hours

Code No: 07A50501

Max Marks: 80

[16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Differentiate Push Down Automata and Linear Bounded Automata
 - (b) Differentiate Context Free Languages and Context Sensitive Languages [8+8]
- 2. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata
 - (b) Convert the following Context Free Grammar to Push Down Automata $S \rightarrow aAA$ $A \rightarrow aS \mid bS \mid a$ [8+8]
- (a) Find NFA which accepts the set of all strings over {0,1} in which the number of occurances of 0 is divisible by 3 and the number of occurances of 1 is divisible by 2.
 - (b) Draw the transition diagram for a NFA which accepts all strings with either two consecutive 0's or two consecutive 1's.
 - (c) Differentiate NFA and DFA. [6+6+4]
- 4. Let G be the grammer $S \rightarrow aB \mid bA$, $A \rightarrow a \mid aS \mid bAA$, $B \rightarrow b \mid bS \mid aBB$ for the string aaabbabbba Find a
 - (a) Left most derivation
 - (b) Right most derivation
 - (c) Parse Tree.
- 5. (a) Construct a Mealy machine which is equivalent to the Moore machine given in table.

Present State	Next State		Output
	a=0	a=1	
$\rightarrow q_0$	q_3	q_1	0
q_1	q_1	q_2	1
q_2	q_2	q_3	0
q_3	q_3	q_0	0

(b) Construct the corresponding Mealy machine to the Moore machine described by the transition table given. [8+8]

Present Staate	Next State		Output
	a=0	a=1	
$\rightarrow q_1$	q_1	q_2	0
q_2	q_1	q_3	0
q_3	q_1	q_3	1

Code No: 07A50501

$\mathbf{R07}$

Set No. 4

[8+8]

- 6. (a) Construct a FA recognizing L (G), where G is the grammar S→aS | bA | b and A→aA| bS | a
 - (b) Construct a DFA equivalent to the grammar S→aS | bS | aA, A→bB, B→aC, C→ ε [8+8]
- 7. (a) Eliminate ε -productions from the grammar G given as A \rightarrow aBb | bBa B \rightarrow aB | bB | ε

FRS

- (b) Convert the following grammar to Greibach Normal Form $S \rightarrow ABA \mid AB \mid BA \mid AA \mid B$ $A \rightarrow aA \mid a$ $B \rightarrow bB \mid b$
- 8. Design Turing Machine which will recognize strings containing equal number of 0's and 1's [16]

R07

III B.Tech I Semester Examinations, November 2010 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering

Time: 3 hours

Code No: 07A50501

ber Schence hind Engineering

Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) If G=({S}, {0, 1}, {S \rightarrow 0S1, S \rightarrow \varepsilon}, S), find L(G).
 - (b) If $G = ({S}, {a}, {S \rightarrow SS}, S)$ find the language generated by G. [8+8]
- 2. (a) Construct DFA and NFA accepting the set of all strings not containing 101 as a substring.
 - (b) Draw the transition diagram of a FA which accepts all strings of 1's and 0's in which both the number of 0's and 1's are even.

(c) Define NFA with an example.

[6+6+4]

[16]

- 3. Find regular expressions representing the following sets
 - (a) The set of all stings over {0, 1} having at most one pair of 0's or atmost of one pair 1's
 - (b) The set of all strings over{a, b} in which the number of occurrences of a is devisible by 3
 - (c) The set of all strings over {a, b} in which there are at least two occurrences of b between any two occurrences of a.
 - (d) The set of all strings over{a, b} with three consecutive b's [16]
- 4. Design Turing Machine for $L = \{ 0^n \ 1^n \ 0^n \mid n \ge 1 \}$
- 5. (a) Convert the following grammar to Greibach Normal Form $\begin{array}{c} S \rightarrow SS \\ S \rightarrow 0S1 ~|~ 01 \end{array}$
 - (b) Show that grammar is ambiguous S \rightarrow aSbS | bSaS | ε [8+8]
- 6. (a) Construct a NFA accepting ab, ba and use it to find a deterministic automation accepting the same set.
 - (b) $M = (\{q1, q2, q3\}, \{0, 1\}, \delta q1 \{q3\})$ is a NFA where δ is given by $\delta (q1, 0) = \{q2, q3\}, \ \delta (q1, 1) = \{q1\}$ $\delta (q2, 0) = \{q1, q2\}, \ \delta (q2, 1) = \emptyset$ $\delta (q3, 0) = \{q2\}, \ \delta (q3, 1) = \{q1, q2\}$ construct an equivalent DFA. [8+8]
- 7. Design Push Down Automata for $L = \{a^{2n} b^n \mid n \ge 1\}$ [16]

Code No: 07A50501

R07

- 8. Construct LR(0) items for the grammar given find it's equivalent DFA.
 - $\mathrm{S}^{|} \to \mathrm{S}$
 - $S \to AS \mid a$
 - $\mathbf{A} \to \mathbf{a}\mathbf{A} \mid \mathbf{b}$

[16]

FRANKER

R07

III B.Tech I Semester Examinations, November 2010 FORMAL LANGUAGES AND AUTOMATA THEORY Computer Science And Engineering

Time: 3 hours

Code No: 07A50501

inputer Science And Engineering

Max Marks: 80

[8+6+2]

[5+5+6]

[16]

[16]

Answer any FIVE Questions All Questions carry equal marks *****

- 1. (a) Write the steps in construction of minimum automaton.
 - (b) Write the applications of Finite Automata.
 - (c) Define NFA with ε -moves.
- 2. (a) Explain the procedure to Convert the Context Free Grammar to Push Down Automata
 - (b) Convert the following Context Free Grammar to Push Down Automata $S \rightarrow aSbb \mid aab$ [8+8]
- 3. Write about the following
 - (a) Linear-Bounded Automata
 - (b) Context-Sensitive Language
 - (c) Decidability of PCP.
- 4. What is Chomsky Normal Form? Convert the following Context Free Grammar to Chomsky Normal Form.
 - $\begin{array}{l} \mathbf{S} \rightarrow \mathbf{A} \mathbf{a} \mathbf{B} \ / \ \mathbf{a} \mathbf{a} \mathbf{B} \\ \mathbf{A} \rightarrow \varepsilon \end{array}$
 - $B \rightarrow bbA$
- 5. (a) Construct a grammar G generating $\{xx \mid x \in \{a, b\}^*\}$
 - (b) Construct a grammar generating $L = \{wcw^R \mid w \in \{a, b\}^*\}$ [8+8]
- 6. Design Turing Machine for $L = \{ a^n b^n c^n \mid n \ge 1 \}$
- 7. (a) Give NFA accepting the set of all strings of 0's and 1's such that the 10th symbol from the right is a 1.
 - (b) Give DFA accepting the set of all strings with 3 consecutive 0's over the alphabet $\{0, 1\}$.
 - (c) Define Finite Automata. Give an example. [6+6+4]
- 8. (a) Give regular expression for representing the set L of strings in which every 0 is immediately followed by at least two 1's
 - (b) Construct a FA equivalent to the regular expression (0 + 1) * (00+11)(0+1)*[8+8]
