III B.Tech I Semester Examinations,November 2010 FLUID MECHANICS AND HYDRAULIC MACHINERY
 Automobile Engineering

Time: 3 hours

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Bring out the differences between impulse and reaction turbines.
(b) Explain the working of a Pelton wheel.
2. A turbine is to operate under a head of 35 m at 250 rpm . The discharge is $9 \mathrm{~m}^{3} / \mathrm{s}$. If the overall efficiency is 80 per cent, determine:
(a) Power generated.
(b) Specific speed of the turbine.
(c) Type of turbine.
3. (a) Define the terms:
i. Impact of jets.
ii. Jet propulsion.
(b) Find the force exerted by a jet of water of diameter 100 mm on a stationary flat plate when the jet strikes the plate normally with a velocity of $30 \mathrm{~m} / \mathrm{s}$.

$$
[8+8]
$$

4. (a) Explain with a neat sketch of piezo meter.
(b) A differential manometer is connected at two points A and B . At A air pressure is $100 \mathrm{KN} / \mathrm{m}^{2}$. Find the absolute pressure at B.
5. (a) Derive an expression for the minimum speed for starting a centrifugal pump. Explain briefly the effect of variation of discharge on the efficiency.
(b) List the main component parts of centrifugal pump and explain them briefly. [8+8]
6. The following data is available for a hydropower plant: Available head $=130 \mathrm{~m}$, catchments area $=220 \mathrm{Sq} . \mathrm{km}$, annual average rainfall $=150 \mathrm{~cm}$, Turbine efficiency $=86 \%$, generator efficiency $=91 \%$, and evaporation losses $=18 \%$. Determine power developed in MW taking load factor as unity.
7. A pipe of diameter 0.4 m and of length 2000 m is connected to a reservoir at one end. The other end of the pipe is connected to a junction from which two pipes of lengths 1000 m and diameter 300 mm run in parallel. These parallel are connected to another reservoir, which is having level of water 10 m below the water level of the above reservoir. Determine the total discharge if $f=0.015$.
[16]
8. A pipe (1) 450 mm in diameter branches into two pipes $2 \& 3$ of diameters 300 mm and 200 mm respectively. If the average velocity in 450 mm diameter pipe is $3 \mathrm{~m} / \mathrm{sec}$, find.
(a) Discharge through 450 mm diameter pipe.
(b) Velocity in 200 mm diameter pipe if the average velocity in 300 mm pipe is 2.5 $\mathrm{m} / \mathrm{sec}$.

III B.Tech I Semester Examinations,November 2010 FLUID MECHANICS AND HYDRAULIC MACHINERY
 Automobile Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Briefly explain about the water hammer in pipes.
(b) What is a surge tank. Draw and briefly explain about different types of surge tanks.
2. (a) Define the term vapour pressure. How does it vary with temperature?
(b) A soap bubble 50 mm diameter has an internal pressure in excess of the outside pressure of $25 \mathrm{~N} / \mathrm{m}^{2}$. Calculate tension in the soap film.
3. (a) How is the continuity equation based on the principle of conservation of mass stated. State and explain continuity equation.
(b) The diameter of a pipe at the sections 1 and 2 are 10 cm and 15 cm respectively. Find the discharge through the pipe if the velocity of water flowing through the pipe at section 1 is $5 \mathrm{~m} / \mathrm{sec}$. Determine also the velocity at section 2. $[8+8]$
4. (a) Explain the term coefficient of friction. On what factors does this coefficient depend?
(b) What is a compound pipe? What will be loss of head when pipes are connected in series? $\quad[8+8]$
5. From the investigation of hydro site the following data is available. Available head $=50 \mathrm{~m}$, catchments area $=50 \mathrm{sq} \cdot \mathrm{km}$, rainfall $150 \mathrm{~cm} /$ year, 60% rainfall can be utilized: Turbine efficiency $=80 \%$, generator efficiency $=91 \%$, penstock efficiency $=75 \%$, load factor $=60 \%$, Determine the suitability of capacity of turbo generator.
6. (a) Draw an indicator diagram considering the effect of acceleration and friction in suction and delivery pipes. Find an expression for the work done/second in case of single - acting reciprocating pump.
(b) Define Specific speed of a centrifugal pump. Derive an expression for the specific speed. How does the specific speed of a centrifugal pump differ from that of a turbine?

$$
[8+8]
$$

7. A jet of water having a velocity of $35 \mathrm{~m} / \mathrm{s}$ impinges on a series of vanes moving with a velocity of $20 \mathrm{~m} / \mathrm{s}$. The jet makes an angle of 30° to the direction of motion of vanes when entering and leaves at angle of 120°. Draw the triangles of velocities at inlet and out let and find:
(a) The angles of vanes tip so that water enters and leaves without shock.
(b) The work done per unit weight of water entering the vanes.
(c) Efficiency.
8. (a) Differentiate between:
i. Inward and outward flow reaction.
ii. Turbine and pump.
(b) Define and explain hydraulic efficiency, mechanical efficiency and overall efficiency of a turbine.

III B.Tech I Semester Examinations,November 2010 FLUID MECHANICS AND HYDRAULIC MACHINERY
 Automobile Engineering

Time: 3 hours

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Define the following terms.
i. Static head.
ii. Manometric head.
iii. Total head.
(b) A centrifugal pump delivers water against a net head of 14.5 m and a design speed of 1000 rpm The vanes are curved back to an angle of 30° with the periphery. The impeller diameter is 300 mm and outlet width 50 mm . Determine the discharge of the pump if manometer efficiency is 95%. [8+8]
2. (a) What are the objectives of the combined hydro and steam power plants?
(b) What are the safety measures need to be taken for hydro electric power plants?
3. (a) Explain briefly:
i. Potential head,
ii. Velocity head,
iii. Pressure head.
(b) State and derive Bernoullis equation for ideal incompressible fluid flow. [8+8]
4. (a) Explain the difference between Kaplan turbine and Propeller turbine?
(b) Draw a neat sketch of a Francis turbine and explain its working? [8+8]
5. Distinguish between:
(a) Standard and local atmospheric pressures.
(b) Barometric pressure and absolute pressure.
(c) Absolute pressure and gauge pressure.
6. A Pelton wheel develops 5520 kw under a head of 240 m at an overall efficiency of 80% when revolving at a speed of 200 rpm . Find the unit discharge, unit power and unit speed. Assume peripheral coefficient $=0.46$.if the head on the same turbine falls during the summer season to 150 m ,find the discharge , power and speed for this head.
7. Two pipes 1 and 2 ,each of 12 cm diameter branch off from a point A in a pipe line and rejoin at B. Pipe 1 is 480 m long and pipe 2 is 120 m long. Total head at A is 36 m . A short pipe 10 cm diameter is fitted at B and the flow is discharged into atmosphere through it. Assuming $\mathrm{f}=0.018$ for both the pipes, calculate:
(a) Total discharge,
(b) Distribution of discharge in pipes 1 and 2.
8. (a) A stationary vane having an inlet angle of zero degree and an out let angle of 25^{0} receives water at a velocity of $50 \mathrm{~m} / \mathrm{s}$. Determine the components of force acting on it in the direction of the jet velocity and normal to it. Also find the resultant force in magnitude and direction per unit weight of flow.
(b) Derive an expression for the normal force and work done by jet impinging on an inclined fixed plate.

III B.Tech I Semester Examinations,November 2010 FLUID MECHANICS AND HYDRAULIC MACHINERY
 Automobile Engineering

Time: 3 hours
Max Marks: 80

Answer any FIVE Questions
 All Questions carry equal marks

1. (a) Obtain an expression for the force exerted by a jet of water on a fixed vertical plate in the direction of the jet with a neat sketch.
(b) A jet of water 75 mm in diameter issues with a velocity of $30 \mathrm{~m} / \mathrm{s}$ and impinges on a stationary flat plate which destroys its forward motion. Find the force exerted by the jet on the plate and work done. [8+8]
2. (a) Define an Orifice meter. Derive the expression for the discharge through the Orifice-meter.
(b) What is a pitot tube? How will you determine the yelocity at any point with the help of pitot-tube?
[8+8]
3. (a) Define Steady, Un-Steady, Uñiform and Non-Uniform flows.
(b) The diameter of a pipe at the section 1 and 2 are 15 cm and 20 cm respectively. Find the discharge hrough the pipe if velocity of water at section 1 is $4 \mathrm{~m} / \mathrm{sec}$. Determine also the velocity at section2. $\quad[8+8]$
4. A Francis turbine working under a head of 5 m at a speed of 210 rpm .develops 75 kw when the rate of flow of water is $1.8 \mathrm{~m}^{3} / \mathrm{s}$. The runner diameter is 1 m . If the head on this turbine is increased to 16 m , determine its new speed, discharge and power.
5. (a) Make a neat sketch of a hydro power plant and show clearly the various elements.
(b) what is flow duration curve.Explain the use of it with a neat sketch. [8+8]
6. (a) Two jets strike the buckets of a pelton wheel, which is having shaft power as 15450 KW . The diameter of each jet is given as 200 mm . If the net head on the turbine is 400 m find the overall efficiency of the turbine. Take CV $=1.0$
(b) Write a short note on the special features of a Pelton bucket. How do you find the number of buckets?
[8+8]
7. (a) Why are centrifugal pumps used sometimes in series and some times in parallel?
(b) Draw and explain the following characteristic curves for a centrifugal pump: head, power and efficiency versus discharge with constant speed.
8. (a) Define Surface tension. Discuss the factors affecting surface tension.
(b) A piston 9.95 cm diameter works in a cylinder 10 cm diameter, 12 cm long. The space between the two is filled with a lubricating oil of viscosity 0.65 poise. Calculate the speed of the piston through the cylinder under the action of an axial force of 5.0 N .

