R07

Set No. 2

IV B.Tech I Semester Examinations, November 2010 DIGITAL IMAGE PROCESSING

Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. propose a technique for detecting gaps of length ranging between 1 and L pixels in line segment of a binary image. Assume that the lines are 1 pixel thick. Note: base your technique on 8-neighbor connectivity analysis. [16]
- 2. Discuss following histogram techniques for Image enhancement.
 - (a) Histogram specification.
 - (b) Local enhancement.

Code No: 07A70501

[16]

- 3. (a) Discuss in detail sampling and quantization of Images.
 - (b) Define spatial resolution? What is its effect on Image processing. [10+6]
- 4. Sketch perspective plot of an 2-D Ideal High pass filter transfer function and filter cross section and explain its usefulness in Image enhancement. [16]
- 5. Give the expressions for 1D and 2D kernels of Walsh transform, also give the transform expressions. [16]
- 6. Explain the following:
 - (a) Spatial processing
 - (b) Color vectoring processing.

[8+8]

7. An 8 level image has the gray level distribution given in table.

\mathbf{r}_k	$\mathbf{P}_r(\mathbf{r}_k)$	Code 1	$\mathbf{L}_1(r_k)$	Code 2	$\mathbf{L}_2(\mathbf{r}_k)$
$r_0 = 0$	0.19	000	3	11	2
$r_1 = 1/7$	0.25	001	3	01	2
$r_2 = 1/7$	0.21	010	3	10	2
$r_3 = 3/7$	0.10	011	3	001	3
$r_4 = 4/7$	0.08	100	3	0001	4
$r_5 = 5/7$	0.06	101	3	00001	5
$r_6 = 6/7$	0.03	110	3	000001	6
$r_7=1$	0.02	111	3	000000	6

- (a) construct the best 2-bit binary shift code.
- (b) construct the best B_1 code for the distribution.

[16]

8. (a) How the Periodic Noise is reduced by Frequency Domain Filtering.

Code No: 07A70501

R07

Set No. 2

(b) Write that transfer function of a Butter worth notch filter.

[8+8]

CRSTRAIN

R07

Set No. 4

IV B.Tech I Semester Examinations, November 2010 DIGITAL IMAGE PROCESSING

Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Distinguish between spatial domain techniques and frequency domain techniques of Image enhancement. [16]
- 2. (a) Non uniform sampling is useful for what type of Images. Give reasons.
 - (b) What are the disadvantages of non uniform sampling. [8+8]
- 3. Write about Various Estimation of Noise Parameters. [16]
- 4. Suggest typical derivative masks for Image enhancement i.e.
 - (a) Roberts

Code No: 07A70501

- (b) Prewitt
- (c) Sobel. [16]

How many unique Huffman codes are there for three-symbol source? Construct them.

- 6. With reference to FFT show that
 - (a) W2ux2M=WuxM
 - (b) Wu+MM=WuM
 - (c) Wu+M2M=-Wu2M. [16]
- 7. Show that the Sobel and Prewitt Gradient masks of following images give isotropic results for horizontal and vertical edges and for edges oriented at + or 45°. $\nabla f = \text{mag}(\nabla f)[G_x^2 + G_y^2]^{1/2}$ and $\nabla f = |Gx| + |Gy|$ give identical results for edges oriented in the horizontal and vertical directions. [16]

Z1	Z2	Z3
Z4	Z5	Z6
Z7	Z8	Z9

8. What are the techniques used for Image smoothing? Explain any two spatial and two frequency techniques used for image smoothing. [16]

Code No: 07A70501

R07

Set No. 1

IV B.Tech I Semester Examinations, November 2010 DIGITAL IMAGE PROCESSING

Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

1. (a) Discuss basic transformations of pixels.	
(b) Define concatenation.	[12+4]
2. What is Noise? what are the spatial and frequency properties of noise?	[16]
3. Write about various edge Detectors available in function edge.	[16]
4. (a) Draw the relevant diagram for a communication system model.(b) Explain the noiseless coding theorem.	[8+8]
5. (a) With example discuss FWT concept .(b) What are the advantages and disadvantages of FWT.	[8+8]
6. (a) Explain about YCbCr color space.(b) Explain about HSC color space.	[8+8]
7. What is histogram of an Image? Sketch histograms of basic Image type how histogram is useful for Image enhancement.	es. Discuss
8. (a) Explain the Homomorphic filtering approach for image enhancement (b) Show that the fourier transform and its inverse are linear processor	

R07

Set No. 3

IV B.Tech I Semester Examinations, November 2010 DIGITAL IMAGE PROCESSING

Electronics And Communication Engineering

Time: 3 hours Max Marks: 80

Answer any FIVE Questions All Questions carry equal marks

- 1. Compute Fourier transform of 2D-gate function f(x,y) with amplitude ?A? and width along x- axis is 'X' and width along y- axis is 'Y'. Also sketch its spectrum and light intensity function. [16]
- 2. Explain about the Hough Transform Peak Detection.
- 3. Discuss following terms w.r.t Digital Image Processing.
 - (a) Sampling

Code No: 07A70501

- (b) Quantization
- (c) Relations between pixels
- (d) Transformations.

[16]

[16]

- 4. Explain the following:
 - (a) Gaussian noise
 - (b) Erlang noise.

[16]

- 5. Basic approach used to compute the digital gradient involves taking the differences of the form f(x,y) f(x+1,y).
 - (a) Obtain filter transfer function H(u,v) for performing equivalent process in the frequency domain.
 - (b) Show that it is a high pass filter.

[16]

- 6. Explain the following:
 - (a) Color transformation
 - (b) Spatial processing.

[16]

- - (a) Decode the line.
 - (b) Create a 1 -D iterative WBS procedure that begins by looking for all white lines (a 64-pixel block) and successively halves nonwhite intervals until four pixel blocks are reached. [16]

Code No: 07A70501

R07

Set No. 3

8. Discuss the limiting effect of repeatedly applying a 3X3 low pass spatial filter to a digital Image. You may ignore the border effects. [16]
